
©Copyright 2025

Steven Stetzler



Driving Discovery in Astronomy Using Scalable Computing and Fast
Algorithms

Steven Stetzler

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2025

Reading Committee:

Mario Jurić, Chair

Andrew Connolly

Thomas Quinn

Program Authorized to O↵er Degree:
Astronomy



University of Washington

Abstract

Driving Discovery in Astronomy Using Scalable Computing and Fast Algorithms

Steven Stetzler

Chair of the Supervisory Committee:
Mario Jurić
Astronomy

The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will produce

and publicly release an imaging and catalog dataset larger than any before it. At a total

data volume of 500 PB, it will only be possible to realize the full scientific potential of

this survey if tools and algorithms are available that can scale to the size of the dataset.

This thesis contributes to this e↵ort through three key advancements. First, I demonstrate

how cloud-based science platforms can be used to access and analyze large catalogs using

a distributed computing framework. The distributed computing tools utilized are user-

friendly and accessible, allowing astronomers to scale their workflows to the entire LSST

catalog. Second, I illustrate how the LSST Science Pipelines–a set of tools and algorithms for

processing astronomical images–can be applied to a wide-field imaging survey, verifying their

scalability and applicability in processing the LSST imaging dataset. I also provide tools

that enable users and research groups to perform their own image processing campaigns.

Finally, I introduce an optimized version of the shift-and-stack algorithm, enhancing its

e�ciency for detecting faint solar system objects in multi-epoch imaging surveys. This

improved algorithm provides speedup relative to a naive implementation. This optimization

lays the foundation for application of shift-and-stack to the entire LSST dataset, particularly

in the search for faint inner solar system objects.



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Big Data Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Speeding Up Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Finding Faint Solar System Objects: A Computational Challenge . . . . . . . 4

1.4 Realizing the Potential of LSST . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Enabling Access to Scalable Computing in the Cloud . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A Platform for User-Friendly Scalable Analysis of Large Astronomical Datasets 11

2.3 A Deployment for ZTF Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Scalability, Reliability, Costs, and User Experience . . . . . . . . . . . . . . . 34

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 3: A Large Image Processing Campaign For Discovery of Trans-Neptunian
Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Survey Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Image Processing with the LSST Science Pipelines . . . . . . . . . . . . . . . 52

3.4 Optimizing Sky Templates for Slow Moving Object Recovery . . . . . . . . . 62

3.5 Processing Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 4: An E�cient Shift-and-Stack Algorithm Applied to Detection Catalogs 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 E�cient And Exhaustive Stacking of Detection Catalogs . . . . . . . . . . . . 89

4.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

i



4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 5: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ii



LIST OF FIGURES

Figure Number Page

2.1 An illustration of the structure and composition of YAML-formatted text
specifying Kubernetes objects that together create a functional and internet-
accessible Jupyter notebook server. The Jupyter notebook application is cre-
ated as a Pod on the cluster (right). Networking objects (top left) specify how
a public-facing load balancer can be connected to the Jupyter notebook Pod
(notebook-pod) on a certain port (8888). Storage objects trigger the cre-
ation of, for example, hard drive disk space from the cloud provider (bottom
left). Colored text indicate how the files are linked to support one another:
blue indicates how network and application are linked, orange how applica-
tion and storage are linked, and green how storage volumes are mounted into
the filesystem of the application. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 A diagram of the essential components of the Kubernetes cluster when the
science platform is in use. Each box represents a single Kubernetes Pod
scheduled on the cluster. The colors of the boxes and the dashed ovals sur-
rounding the three groups are for visualization purposes only; each Pod exists
as an independent entity to be scheduled on any available machines. The col-
ored paths and letter markers indicate the pattern of API interactions that
occur when users interact with the system. (a) shows a user connecting to the
JupyterHub from the internet. The JupyterHub creates a notebook server
(jupyter-user-1) for the user (b). The user creates a Spark cluster using
their notebook server as the location for the Spark driver process (c). Sched-
uled Spark executor Pods connect back to the Spark driver process running
in the notebook server (d). The Spark driver process accesses a MariaDB
server for catalog metadata (e). In the background, the Kubernetes cluster
autoscaler keeps track of the scheduling status of all Pods (f). At any point
in (a)-(d), if a Pod cannot be scheduled due to a lack of cluster resources, the
cluster autoscaler will request more machines from AWS to meet that need
(g). Optionally, the user can connect to their running server with SSH (h). . 17

iii



2.3 An illustration of the filesystem within each container spawned by the Jupyter-
Hub (jupyter-user-1 and jupyter-user-2) and by the user in the creation
of a distributed Spark cluster. Most of the filesystem (the root directory
/) exists on an ephemeral storage device tied to the host machine. The
home directories, conda environment directories, and Jupyter kernel directo-
ries within each container are mounted from an external NFS server. This file
structure allows for sharing of Jupyter Notebook files and code environments
with other users and with a user’s individual Spark Cluster. UNIX user ids
(UID) and group ids (GID) are set to prevent unauthorized data access and
edits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 A screenshot of the JupyterHub server spawn page. Several options for com-
puting hardware are presented to the user with their hardware and costs
enumerated. Of note is the ability to spawn GPU instances on demand.
When a user selects one of these options, their spawned Kubernetes Pod is
tagged so that it can only be scheduled on a node with the desired hardware.
If a node with the required hardware does not exist in the Kubernetes cluster,
the cluster autoscaler will provision it from the cloud provider (introducing
a ⇠5 minute spawn time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 An example analysis (boiled down to two lines) that finds light curves in
the ZTF light curve catalog with a dimming event. (1) shows how the ZTF
catalog is loaded as a Spark DataFrame (df), (2) shows the product of filtering
light curves for dimming events, and (3) shows the result of fitting a model to
the remaining light curves. This process exemplifies that analyses can often
be represented as a filtering and transformation of a larger dataset, a process
that Spark can easily execute in parallel. . . . . . . . . . . . . . . . . . . . . . 32

iv



2.6 Speedup computed in strong scaling (left) and weak scaling (right) experi-
ments of a simple Spark query that summed a single column of the ZTF cat-
alog, ⇠3⇥ 109 rows. Speedup is computed using Eq. 2.1 and scaled speedup
is computed using Eq. 2.2. For each value of vCPU, the query was executed
several (3+) times. For each trial, the runtime was measured and speedup
calculated. Each point represents the mean value of speedup and error bars
indicate the standard deviation. The first row shows speedup computed us-
ing sequential computing (vCPU = 1) to set the reference time and reference
problem size. The second row shows speedup computed using 16 vCPU to
set the reference. With sequential computing as the reference, we observe
speedup that is abnormally high in both the strong and weak scaling case.
By adjusting the reference point to vCPU = 16, we find that we can re-
cover reasonable weak scaling results and expected strong scaling results for
a small to medium number of cores. Using the adjusted reference, we observe
in the strong scaling case diminishing returns in the speedup as the number of
cores allocated to the query increases, as expected. The weak scaling shows
optimistic results; the speedup scales linearly with the catalog size as expected. 36

2.7 A screenshot of the job timeline from the Spark UI when dynamic allocation
is enabled. A long-running query is started, executing with a small number of
executors. As the query continues, Spark adds exponentially more executors
to the cluster at a user-specified interval until the query completes or the max
number of executors is reached. Once the query completes (or is terminated,
as shown here), the Spark executors are removed from the cluster. . . . . . . 45

3.1 The sky-locations of the A0 (blue), A1 (orange), B0 (green), and B1 (red)
DEEP fields. Circles represent an approximation of the DECam 3 deg2 field-
of-view. The gray line represents the location of the ecliptic plane on the
sky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 The individual pointings of the A0 (blue), A1 (orange), B0 (green), and B1
(red) DEEP fields. Circles represent an approximation of the DECam 3 deg2

field-of-view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 A visualization of an example pipeline. Datasets are represented as gray
boxes while tasks are represented as cyan boxes. Arrows indicate the in-
put/output relationship between datasets and tasks. Dashed lines represent
“prerequisite“ dataset inputs which must exist prior to pipeline execution.
This pipeline represents the execution of tasks that will instrument correct,
characterize, and calibrate a raw image. . . . . . . . . . . . . . . . . . . . . . 54

3.4 Collections for bias, flat, drp, coadd, and di↵ drp as printed from Butler
query-collections. For brevity, the values {i}, {datetime}, and {group} are
placeholders in collection names that follow the same pattern. . . . . . . . . . 60

v



3.5 An example bright and faint synthetic TNO as it appears in a science image,
a co-added template, and a di↵erence image. . . . . . . . . . . . . . . . . . . 63

3.6 The completeness of a shift-and-stack search applied to di↵erence images
made using a variety of template construction methods. Colors represent a
choice in the coaddition statistic, while a di↵erence in the line styling repre-
sents a choice in which exposures were included in the template. Fainter lines
indicate that signal from the synthetic objects were not included in the tem-
plate, representing a “theoretical maximum” recovery e�ciency achievable
when the self-subtraction e↵ect is removed. . . . . . . . . . . . . . . . . . . . 68

3.7 The probability of detecting a TNO at a given magnitude, found by multi-
plying completeness with a luminosity function for TNOs. Colors represent a
choice in the coaddition statistic, while a di↵erence in the line styling repre-
sents a choice in which exposures were included in the template. Fainter lines
indicate that signal from the synthetic objects were not included in the tem-
plate, representing a “theoretical maximum” recovery e�ciency achievable
when the self-subtraction e↵ect is removed. . . . . . . . . . . . . . . . . . . . 70

3.8 The default and updated bad pixel mask for detector 57 (N26) as well as the
before/after calibrated exposure that results after application of these mask.
When using the updated bad pixel mask, a large region of the detector—in
addition to a region at the edge–is no longer masked and interpolated over. In
the calibrated exposures, the contrast is heightened to highlight the masked
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 The di↵erences between and the result of merging the bad pixel masks pro-
duced by the DECam community pipeline (CP) and Dark Energy Survey
(DES). Binary operators “!”, “&”, and “|” stand for “not”, “and”, and “or”.
Merging the masks produces a conservative bad pixel mask that can be ap-
plied to the DECam images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.10 Images of calibrated exposures for detector 31 and 61 which have pervasive
issues during processing. Pixels are visualized in gray while colors indicate
layers of values in the exposure mask. . . . . . . . . . . . . . . . . . . . . . . 75

3.11 The runtime and memory usage grouped by task. Arrows indicate the min-
imum and maximum value across tasks, while the bottom, middle, and top
of the boxes indicate the 25th, 50th, and 75th percentile in values. Colors
indicate pipeline or pipeline step(s) that these tasks belong to. . . . . . . . . 78

3.12 The total storage required for the tasks in the pipeline executed. Tasks are
colored by the pipeline or pipeline steps they belong to. . . . . . . . . . . . . 79

3.13 The runtime and memory usage of coaddition tasks for constructing the sur-
vey template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



3.14 The measured magnitudes of a subset of the synthetic moving objects injected
into the DEEP survey images. Fluxes are measured on a calibrated exposure
(calexp; blue), as well as a di↵erence image (di↵) using a survey template
(allSky; orange) and nightly (green) template. . . . . . . . . . . . . . . . . . . 83

3.15 The measured fluxes of a subset of the synthetic moving objects injected into
the DEEP survey images. Fluxes are measured on a calibrated exposure
(calexp; blue), as well as a di↵erence image (di↵) using a survey template
(allSky; orange) and nightly (gree) template. . . . . . . . . . . . . . . . . . . 84

3.16 A cutout of a single bright (VR ⇠ 20.98) synthetic TNO injected into the
DEEP survey images. Panels visualize from left to right the synthetic TNO
in a calibrated exposure (calexp), in a di↵erence image (di↵) produced via the
survey template (allSky), the cutout of the template at the given location of
the object, and the di↵erence and template constructed using a single night’s
data. In the nightly template di↵erence image, darkened “wings” of lost flux
are present in the image while in the nightly template, a large and bright
streak appears due to flux from the moving object. In the survey template
di↵erence image, the “wings” vanish while in the template the flux from the
moving object appears as a faint streak relative to the already faint sources
around it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 The on-sky coordinates of a moving object with respect to time. The dashed
black line represents a trajectory estimated using least squares multivariate
regression, which does not predict the trajectory accurately due to the pres-
ence of outliers in the dataset. The solid black line represents a trajectory
estimated using robust multivariate regression utilizing the Minimum Co-
variance Determinant (MCD), which accurately predicts the moving object
trajectory in the presence of outliers. . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 The expected number of detection counts in a bin of size �x for objects of dif-
ferent SNR ⌫ found in catalogs of di↵erent SNR thresholds ⌫th. Thick (thin)
colored lines approximately indicate when the expected number of signal de-
tections will be larger (less) than the expected number of noise detections i.e.
E[Nsignal]/E[Nnoise]. Black solid (dashed) lines indicate values of Nmin that
produce a false positive rate of ✏ = 100/Nstacks in an example MBA (TNO)
search covering ⌦ = 162 arcmin2 with a = 1 arcsec seeing and a �t = 4 hour
time baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 The distribution of velocities and magnitudes of the injected synthetic MBAs
and TNOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 The number of peaks and pixels in a likelihood image derived from a 2048⇥
4096 CCD di↵erence image as a function of the SNR threshold. At all values
of SNR, the number of detection peaks is smaller by factors of 102 � 106. . . 114

vii



4.5 A visualization of the sky locations of a stacked detection catalog derived
from a 4 hour sequence of DECam images with a grid of constant eclip-
tic latitude/longitude overlaid. Detections at a single epoch represent the
on-sky location of a putative source on a di↵erence image. Detections are
accumulated across all 104 epochs and plotted jointly in this visualization.
Moving objects appear as lines in this stacked visualization. Stationary vari-
able sources as well as di↵erence imaging artifacts appear as clusters and
isolated points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 The fraction of synthetic objects recovered as a function of their magnitude
for the TNO and MBA searches. Dots represent the detection fraction in bins
of size 0.5 mag and error bars represent the asymmetric uncertainty in the
estimated fraction using the Wilson score interval. Two reference magnitudes
are visualized as black solid and dashed vertical lines. The solid black line
visualizes the estimated single-epoch m50 = 23.7. The dashed black line
represents the theoretical achievable depth by coadding all of the images and
is equal to m

coadd
50

= 26.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 The m50 depth from fitting of the completeness (left), the number of candi-
date detections produced per detector (middle), and the number of synthetic
objects (fakes) recovered (right) for the TNO and MBA searches as a func-
tion of the Nmin parameter. The solid black line visualizes the estimated
single-epoch m50 = 23.7. The dashed black line represents the theoretical
achievable depth by coadding all of the images and is equal to m

coadd
50

= 26.2.
Decreasing the value of Nmin increasesm50 depth and the number of synthetic
objects recovered, at the cost of vastly increasing the number of results pro-
duced. Most of the results produced at low values of Nmin are false-positive
candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.8 The m50 depth achieved for the TNO (blue) and MBA (orange) searches as a
function of the SNR of the input catalog choosing Nmin such that the number
of results per detector is fixed at 200. The solid black line represents a single-
epoch SNR ⇠ 5 limiting magnitude of m50 = 23.7 while the dashed black line
represents the theoretical optimal achievable coadded depth of mcoadd

50
= 26.2.

The dotted black line visualizes the expected scaling of achieved depth with
SNR, extrapolated from the single-epoch limiting magnitude. . . . . . . . . . 118

4.9 The median wall-clock runtime and memory usage of our catalog shift-and-
stack algorithm for the TNO (blue) and MBA (orange) searches across the
60 DECam detectors searched. Error bars represent the standard deviation
of the runtime and memory usage values measured. . . . . . . . . . . . . . . . 119

viii



4.10 The left panels visualize the CPU-time and memory usage of our algorithm
as a function of the m50 depth achieved. The black solid line visualizes the
single-epoch m50 = 23.7 while the dashed black line visualizes the theoretical
maximum m

coadd
50

= 26.2 that could be achieved through optimal coaddition.
The dotted black line visualizes the m

KBMOD
50

= 25.47 depth achieved in an
image-based shift-and-stack approach, utilizing the KBMOD software. The right
panels visualize the relative total CPU-time (speedup) and memory usage of
our algorithm when compared to an image-based shift-and-stack search. . . . 120

4.11 The CPU-time and memory usage of the core search component of our al-
gorithm as a function of the �x value and the SNR of the catalog searched.
The black solid lines represent theoretical scaling laws with �x. The right
panels visualize the relative core-search CPU-time (speedup) and memory us-
age when compared to an implementation of an image-based shift-and-stack
search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



LIST OF TABLES

Table Number Page

2.1 The sizes of each of the catalogs available on the ZTF science platform along
with the total data volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Fixed and variable costs associated with running this analysis platform on
Amazon Web Services. This summary provides cost estimates for renting
virtual machine and storing data. Additional costs on the order of ⇠$10 due
to network communication and data transfer are excluded from these results.
Reasonable low and high estimates are chosen for the number of active users
and the amount of interactive usage they have with the system. The number
of Spark query core hours used by each user per month is a guess, but the
high end estimate is similar to the core hours used during the analysis in
Sec. 2.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Completeness parameters for Eq. 4.10 for KBMOD searches on di↵erence im-
ages constructed using di↵erent template types as well as the derived relative
number of TNO detections frel. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 The fraction of datasets produced of type postISRCCD, icExp, and calexp
for nights that have a relatively large number of processing errors, resulting
in at least 3 detectors per focal-plane being lost on average. Nights with more
than 5 detectors per focal-plane lost on average are highlighted with boldface
text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Values of �x in units of the PSF width a for each search performed. A value
of - indicates the search was not performed for the combination of ⌫ and
population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 The m50 depth achieved in the TNO and MBA searches of a catalog of the
given SNR. A value of - indicates the search was not performed. . . . . . . . 109

4.3 Total compute-time, memory usage, and m50 depth achieved when searching
for TNOs. Speedup, relative memory usage, and di↵erence in m50 depth
in comparison to the core-search routine of an image-based shift-and-stack
approach are provided, using 2.54 core-hours, 17.5 GB of memory, and m50 =
25.47± 0.01 as fiducial values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

x



ACKNOWLEDGMENTS

This dissertation represents six and a half years of graduate study in the astronomy

department at the University of Washington. While this dissertation was written alone, the

work it represents could not have been performed without the assistance and support of

many people to whom I am deeply grateful.

I’d first like to extend my appreciation to my advisor Mario Juric̀ for guiding me patiently

through my work and always doing his best to keep me on track. I’d additionally like to

thank my secondary advisors and faculty mentors—Andrew Connolly, Thomas Quinn, and

Jessica Werk—for guiding me through the astronomy graduate program.

My graduate studies were supported in-part by the Krell Institute’s Computational

Science Graduate Fellowship program. Through this fellowship, I had the invaluable op-

portunity to work at Los Alamos National Laboratory. I am deeply grateful to the fellow-

ship program for providing me with this opportunity and to my research mentor, Michael

Grosskopf, for his guidance during the program and continued support afterward.

I am profoundly grateful to the teachers and mentors who shaped my academic path and

made my pursuit of a graduate degree possible. This includes my undergraduate research

and academic advisors—Craig Group, Craig Dukes, and Kevin Stovall—as well as my high

school teachers whose influence I carry with me: Mrs. Sandler, Mrs. Westgate, Mr. Bricker,

and Mrs. Lubinski.

I also want to thank the generation of YouTube content creators and their videos that

sparked my love of learning and led me on my quest for knowledge about the universe:

Henry Reich’s MinutePhysics, Michael Stevens’ Vsauce, and Brady Haran’s Sixty Symbols

and Numberphile channels.

My eternal and deepest thanks go to my family—Mom, Dad, and Victoria—for their

unconditional love, encouragement, and support. You guys rock, and I’m so glad to have

xi



you in my life. Thank you Mom and Dad, for making those long drives to take me to college,

and thank you, Mom, for making sure I woke up to get to school in the first place back in

high school. Thank you, Victoria, for always having my back. I couldn’t have done any of

this without you all.

Finally, I am endlessly grateful for the friendships that sustained me throughout graduate

school. To my friends, both old and new, who o↵ered daily support and companionship—I

truly appreciate you. To my graduate student colleagues, thank you for your solidarity

through this program. A special thanks to Dino Bektešević for being an exceptional research

partner and to Hannah Bish for her wisdom, kindness, and incredible friendship.

It takes a village to raise a scientist. And I am blessed to have been raised well by my

family, friends, teachers, and mentors. Thank you all.



DEDICATION

To my parents: Diane and Steve Stetzler.

xiii





1

Chapter 1

INTRODUCTION

1.1 The Big Data Problem

Astronomy has historically been an e↵ort of individuals and small groups studying the

cosmos via privately owned and operated telescopes and instruments. An individual in-

vestigator formulates a hypothesis, makes a plan to test their hypothesis via one or more

observations of the sky, sources funding and resources to execute that plan, and reports

what they find. As the questions posed become more ambitious, teams of investigators are

required to collaborate to build larger instruments, collect more data, and dig deeper in their

analyses in order to advance our understanding of the universe. One result of this evolution

is the advent of all-sky telescope surveys in which a team of scientists and engineers design

and operate a single telescope to observe the sky in a systematic fashion. These surveys

produce archival datasets from which scientific insights are gleaned by collaborations and

individual investigators, answering an array of questions simultaneously from one telescope

and one survey. The scale of these archival datasets has become truly vast: the largest of

which currently comes from the Panoramic Survey Telescope and Rapid Response System

(Pan-STARRS; Chambers et al. (2019)), which has produced and released to the Astron-

omy community a 1.6 petabyte (PB) dataset. Over the next decade, a new telescope and

survey—the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST; Ivezić

et al. (2019))—will produce and publicly release a dataset that will dwarf all others, at a

total data volume of 500 PB.

Scientific insights are derived from these datasets through a process of data reduction:

an abstract set of input data, typically a digital image of the night sky, is transformed

through algorithms expressed as code and executed by computers into a form that has

physical meaning. Bits of information (sequential values of ones and zeros) in the digital

image of a star are transformed into a measure of the number of photons of a certain energy



2

that came from it at a particular moment: the star’s apparent brightness (Heasley, 1999).

The location of the star in the digital image is calculated relative to other stars in the image,

providing a location on the celestial sphere, a way to find the star at a later date (Lang

et al., 2010). These measurements enter a catalog or database of stars found in the images.

Over sequences of these images, the star is found and its brightness measured again and

again and entered into the catalog. A query against the catalog allows us to construct a

“light curve” for this particular star: how its brightness has varied over time. The physical

properties of the star can be derived from this brightness variation, for example through

physical equations that model how stars expand and contract. Perhaps this star has a funny

shape, and doesn’t look like other stars: instead we’ve found a galaxy, for which we can

still measure its brightness and shape. Or perhaps this star isn’t found at exactly the same

position as before and if we look closely, we notice that it seems to be moving over time:

instead we’ve found an asteroid, an object orbiting the Sun in our own solar system. From

digital bits of ones-and-zeros, knowledge about the physical reality of a single star, galaxy,

or asteroid is generated. And through the simultaneous analysis of thousands, millions,

or even billions of these stars, galaxies, and asteroids we can uncover the mysteries of our

universe. From its matter density (Percival et al., 2007), to its expansion rate (Riess et al.,

1998), to the properties and history of our own galaxy (Helmi, 2020), to the contents and

history of our solar system (Tsiganis et al., 2005; Nesvorný, 2011; Batygin & Brown, 2016).

One of the main challenges in deriving scientific insights from the large datasets produced

by all-sky surveys is that of scale. One byte is 8 bits of information, and a petabyte is

approximately 1 quadrillion bytes. Existing computers can execute approximately 1 billion

instructions per second. If we ask a computer one at a time to turn every zero into a one in

the 500 PB dataset LSST would produce, it would take approximately 8⇥ 500⇥ 250/109 =

4.5⇥ 109 seconds or 142 years. The reality is a lot less bleak than this: a modern computer

can flip multiple bits in one operation, and can perform multiple instructions at once;

however, it takes more than a single operation to convert a digital image into knowledge.

In either case, the point remains: the scale of the dataset is vast from the perspective of

code execution. The code and algorithms that operate on the images from LSST and their

derived catalogs must then be made to execute quickly and e�ciently.



3

1.2 Speeding Up Code

There are four options for speeding up code execution: the code is executed on a faster

computer, the code is implemented in a more computationally e�cient manner, the algo-

rithm the code implements is made more e�cient, or the algorithm/code takes advantage of

parallel computing. The most straightforward of these options is the first; however, the rate

with which instructions are executed on computers has not surpassed 2-3 billion per second

in the past 20 years. For the second, code compilers typically already act to optimize code

before it is executed on a computer. Additionally, the gains from this level of optimization

can be quite small for the e↵ort required. For the third: algorithmic changes require a lot

of human e↵ort and time, but can pay o↵ enormously. If an algorithm’s “complexity” can

be changed, it can reduce the number of instructions that need to be executed by orders

of magnitude. While the payo↵ can be enormous, many algorithms in use by astronomers

are what they are out of necessity: there simply isn’t a di↵erent algorithm that would suf-

fice. The last solution of utilizing parallel programming is often the most accessible and

applicable to the problems of scientific computing.

In the case of converting LSST images into scientifically useful catalogs, parallel com-

puting is directly applicable: the same algorithms can be applied to separate units of the

LSST imaging dataset on multiple computers at once. While it might take a single com-

puter 142 years to flip all of the bits in the LSST dataset, it would take 142 computers a

year, 1,704 computers a month, and 51,830 computers just a day. When many computers

work together, the scale of the big data problem becomes manageable.

The Rubin Observatory has developed the LSST Science Pipelines (LSP; Bosch et al.

(2018, 2019)) to solve this problem. The LSP provides a core set of image processing

algorithms as well as a robust and scalable data management and task execution system

(Jenness et al., 2022). The LSP can be used to scale the image processing e↵ort to thousands

of computers with ease.

Most modern computer hardware already supports parallel execution of instructions

through multi-core architectures, in which multiple central processing units (CPUs) are

available on a single computing chip. Additionally, frameworks exist that provide the ability



4

to scale codes across multiple machines, or nodes. Hardware based on di↵erent computing

architectures can unlock another level of parallelism and provide significant acceleration of

scientific codes. This hardware most commonly comes in the form of field-programmable

gate arrays (FPGAs) and graphics processing units (GPUs). GPUs in particular have

seen a recent explosion in their use as general-purpose computing units due to their wide

availability and ability to accelerate fundamental operations, such as matrix multiplication,

that many scientific algorithms rely on. GPUs are able to execute thousands of instructions

at once on a limited pool of data, unlocking an order of magnitude more parallelism than

is available from CPUs if utilized e�ciently. At present, it is possible through a variety of

methods to achieve the computing scale required to address the big data problem. 51,830

computers is not as large a number as it seems.

1.3 Finding Faint Solar System Objects: A Computational Challenge

One of the main goals of the LSST is to inventory the solar system. In addition to the

planets, known moons, and the Sun, our solar system contains innumerable small bodies

composed of rock and ice tracing bound orbits around the Sun. These small bodies—

also known as minor planets—are categorized into many distinct populations of interest

depending on their orbital properties. Main Belt Asteroids (MBAs) orbit at ⇠ 3 AU from

the sun, in a belt between Mars and Jupiter. Asteroids with orbits that cross the Earth’s

are classified as Near Earth Objects (NEOs). Past the planet Neptune, which orbits at 30

AU, lies the Trans-Neptunian Objects (TNOs), a reservoir of icy bodies in the distant solar

system.

Solar system bodies are discovered through single- and multi-epoch imaging surveys of

the sky. Objects in our solar system move with appreciable proper motion across the sky

due to their orbital motion around the sun in addition to parallax induced by the Earth’s

own orbit. In single epoch-imaging, these objects appear as either point sources or streaks

in an image depending on their proper motion at the time of observation and the exposure

time of the image. In exposures with ⇠ 1 minute durations, MBAs and TNOs appear only

as point sources. Multi-epoch imaging is required to recover coherent motion in the position

of these point sources over time. Detections are collected across a single night to form a



5

track or “tracklet” of linear motion across the sky, followed by the application of a linking

algorithm to group tracklets with coherent motion over nights (Kubica et al., 2007; Denneau

et al., 2013; Holman et al., 2018). This process is computationally expensive, with typical

linking algorithms scaling with the cube of the number of tracklets—O(N3). Advances in

algorithmic complexity from Holman et al. (2018) have brought that scaling to O(N logN),

an enormous and necessary improvement to apply the linking problem at the scale of LSST.

Small solar system bodies are typically cold and emit no light of their own in the visual

wavelengths. This means that their brightness in an image depends on the amount of light

they reflect from the Sun. This value is proportional to the object’s linear size squared,

inversely proportional to its heliocentric distance squared, and inversely proportional to its

geocentric distance squared; in other words, the brightest objects are both large and are

close to us in the solar system while small and distant objects rapidly become too faint to

observe. One may consider extending the telescope exposure time to recover faint objects;

however, the proper motion of these objects always acts to lessen the signal-to-noise of a

point source in an image through streaking/trailing losses making this an infeasible method

for the discovery of faint objects. Additionally, non-sidereal tracking of the telescope cannot

correct for more than the mean motion of a collection of unknown objects, inevitably leading

to reduced signal-to-noise of any detected objects.

Fortunately, computational methods already exist to find faint solar system objects in

multi-epoch imaging. These faint moving objects can be recovered through the application

of the shift-and-stack algorithm—also known as digital tracking/synthetic tracking/track-

before-detect—to survey images. Shift-and-stack aligns pixels (shift) from a set of multi-

epoch images along a candidate moving object trajectory before coadding them (stack)

(Gladman et al., 1998; Bernstein et al., 2004; Heinze et al., 2015). Trajectories that align

with real moving objects lead to coherent signal accumulation across epochs, enabling a

high-confidence detection even when the object appears at low-SNR in individual images.

In stacks of 100 images, this algorithm can discover objects 10⇥ (2.5 magnitudes) fainter

than would otherwise be possible.

The main barrier to broad application of shift-and-stack is its enormous computational

expense: the number of pixel stacks required for a complete search can easily exceed 1010 for



6

small scale searches and take hours or days of compute time. This computational expense

scales with the velocity of the objects targeted for search, limiting the application of shift-

and-stack mostly to searches for slow moving objects in the outer solar system. Speedup

can be achieved through improved parallelism, for example application of shift-and-stack on

GPUs. Whidden et al. (2019) showed it is possible to search the necessary 1010 trajectories

in under a minute with a single GPU. With the use of high levels of parallelism, this

extremely computationally intensive problem can be tackled.

1.4 Realizing the Potential of LSST

The scientific potential of LSST can only be realized when tools and algorithms are available

to scale to the size of its dataset. This can be achieved by improving existing algorithms

and exploiting parallel execution to provide speedup in their application.

In Chapter 2 of this thesis, I address the challenge of accessing and analyzing the PB-

sized LSST catalog. I demonstrate how a cloud-based science platform can enable next-

to-the-data analyses of the LSST catalog among other terabyte-scale astronomical tabular

datasets. The presented platform is built on Amazon Web Services, utilizes Apache Spark

and the Astronomy eXtensions for Spark for parallel data analysis and manipulation, and

provides a JupyterHub web-accessible front-end for user access (Zaharia et al., 2010; Zečević

et al., 2019). I demonstrate the usability of this platform through an example science anal-

ysis of data from the Zwicky Transient Facility’s 1 billion+ light-curve catalog. I show how

this system enables an end-user to iteratively build analyses (in Python) that transparently

scale processing with no need for end-user interaction. This kind of system will be necessary

for investigators to apply their scientific workflow to the LSST dataset.

In Chapter 3 of this thesis, I describe an e↵ort to perform large-scale image processing

for a TNO discovery survey using the LSST Science Pipelines. I describe a set of tools for

performing the processing in an automated and reproducible manner. I additionally perform

experiments to optimize the image processing for the discovery of slow-moving solar system

objects. I show it is possible to recover ⇠ 0.25 mag of lost flux in bright TNOs through the

construction of an optimized survey template. This work verifies the scalability of the LSST

Science Pipelines and provides tools that users and research groups can use to perform their



7

own experiments and processing campaigns on the LSST imaging dataset.

In Chapter 4 of this thesis, I present an alternative implementation of the shift-and-stack

algorithm that trades o↵ sensitivity to the faintest objects for improved computational

performance. My algorithm applies the shift-and-stack algorithm to low-SNR detection

catalogs derived from single-epoch imaging. “Stacking” detection catalogs instead of pixels

reduces the number of numerical operations performed, and the sparsity of the detection

catalog enables key approximations that reduce the number of candidate trajectories that

need to be searched. Together, these enable real-world speedups of 10 � 103⇥ over image-

based shift-and-stack while retaining the ability to find objects fainter than would be possible

otherwise. I explore the depth-compute time trade-o↵ of this algorithm and find that,

when searching for Trans-Neptunian Objects, my algorithm can achieve wall-clock runtime

speedups of at least ⇠ 30⇥ with 88% of the memory usage while sacrificing 0.25 mag in

depth in comparison with an image-based shift-and-stack approach. The attained speedups

enable the broad application of shift-and-stack to the LSST imaging dataset. It additionally

provides a path forward for performing shift-and-stack searches to find faster moving inner

solar system objects.



8

Chapter 2

ENABLING ACCESS TO SCALABLE COMPUTING IN THE CLOUD

2.1 Introduction

Today’s astronomy is undergoing a major change. Historically a data-starved science, it

is being rapidly transformed by the advent of large, automated, digital sky surveys into a

field where terabyte and petabyte data sets are routinely collected and made available to

researchers across the globe.

The Zwicky Transient Facility (ZTF; Bellm et al. (2019); Graham et al. (2019); Dekany

et al. (2020); Masci et al. (2019)) has engaged in a three-year mission to monitor the North-

ern sky. With a large camera mounted on the Samuel Oschin 48-inch Schmidt telescope

at Palomar Observatory, the ZTF is able to monitor the entire visible sky almost twice a

night. Generating about 30 GB of nightly imaging, ZTF detects up to 1,000,000 variable,

transient, or moving sources (or alerts) every night, making them available to the astro-

nomical community (Patterson et al., 2018). Towards the middle of 2025, a new survey,

the Legacy Survey of Space and Time (LSST; Ivezić et al., 2019), will start operations on

the NSF Vera C. Rubin Observatory. Rubin Observatory’s telescope has a mirror almost

seven times larger than that of the ZTF, which will enable it to search for fainter and more

distant sources. Situated in northern Chile, the LSST will survey the southern sky taking

⇠1, 000 images per night with a 3.2 billion-pixel camera with a ⇠10 deg2 field of view. The

stream of imaging data (⇠6PB/yr) collected by the LSST will yield repeated measurements

(⇠100/yr) of over 37 billion objects, for a total of over 30 trillion measurements by the end

of the next decade. These are just two examples, with many others at similar scale either in

progress (Kepler, Pan-STARRS, DES, GAIA, ATLAS, ASAS-SN; Kaiser et al., 2010; Dark

Energy Survey Collaboration et al., 2016; Gaia Collaboration et al., 2016a; Tonry et al.,

2018; Shappee et al., 2014) or planned (Roman, Euclid; Spergel et al., 2015; Scaramella

et al., 2014). They are being complemented by numerous smaller projects (.$1M scale),



9

contributing billions of more specialized measurements.

This 10-100x increase in survey data output has not been followed by commensurate

improvements in tools and platforms available to astronomers to manage and analyze those

catalogs. Most survey-based studies today are performed by navigating to archive web-

sites, entering (very selective) filtering criteria to download “small” (⇠10s of millions of

rows; ⇠10GB) subsets of catalog products. Those subsets are then stored locally and an-

alyzed using custom routines written in high-level languages (e.g., Python or IDL), with

the algorithms generally assuming in-memory operation. With the increase in data volumes

and subsets of interest growing towards the ⇠100GB-1TB range, this mode of analysis is

becoming infeasible.

One solution is to provide astronomers with access to the data through web portals and

science platforms – rich gateways exposing server-side code editing, management, execution

and result visualization capabilities – usually implemented as notebooks such as Jupyter

(Kluyver et al., 2016) or Zeppelin (Cheng et al., 2018). These systems are said to bring the

code to the data, by enabling computation on computational resources co-located with the

data and providing built-in tools to ease the process of analysis. For example, the Rubin

Observatory/LSST has designed (Jurić et al., 2017; Dubois-Felsmann et al., 2017) and

implemented a science platform suitable for accessing and visualizing data from the LSST,

with deployments hosted on both on-premises hardware and Google Cloud (O’Mullane

et al., 2021).1 While such science platforms are a major step forward in working with

large datasets, they still have some limitations when deployed on on-premises hardware or

traditional HPC systems. These systems can su↵er from having insu�cient computing next

to the data: all users of shared HPC resources are familiar with “waiting in the queue” due

to over subscription. Science platforms built on cloud computing resources will find it easier

to provide computing resources according to user demand: this is the promise of “elastic”

computing in the cloud.

Secondly, even when surveys deploy distributed SQL databases for serving user queries

(e.g. Qserv in the case of LSST; Wang et al., 2011), user analysis is still not easily parallelized

1See as well https://data.lsst.cloud/

https://data.lsst.cloud/


10

– query requests and results are bottlenecked at one access point which severely limits

scalability. In contrast, the system we describe and implement provides direct, distributed

access to data for a user’s analysis code. Finally, current science platforms do not tackle the

issue of working on multiple large datasets at the same time – if they’re in di↵erent archives,

they still have to be staged to the same place before work can be done. In other words,

they continue to su↵er from availability of computing, being I/O-bound, and geographic

dislocation.

We therefore need to not only bring the code to the data, but also bring the data

together, co-locate it next to an (ideally limitless) reservoir of computing capacity, with I/O

capabilities that can scale accordingly. Furthermore, we need to make this system usable,

by providing astronomer-friendly frameworks for working with extremely large datasets in a

scalable fashion. Finally, we need to provide a user interface which is accessible and familiar,

with a shallow learning curve.

We address the first of these challenges by utilizing the Cloud to supply data storage ca-

pacity, e↵ective dataset co-location, I/O bandwidth, and (elastic) compute capability. This

work utilizes the Amazon Web Services (AWS) cloud, leveraging Amazon Simple Storage

Service (Amazon S3) for storage and access to TB+ sized tabular data sets (catalogs) and

Amazon Elastic Cloud Compute (Amazon EC2) for elastic computing. Bektesevic et al.

(2020) have investigated using the same services for scalable storage, access, and processing

of image data. The second challenge is addressed by extending the Astronomy eXtensions

for Spark (AXS; Zečević et al., 2019), a distributed database and map-reduce like workflow

system built on the industry-standard Apache Spark (Zaharia et al., 2010) engine, to work

in this cloud environment. Spark allows the execution of everything from simple ANSI

SQL-2011 compliant queries to complex distributed workflows, all driven from Python.

When using Spark, data can be sourced from a number of storage solutions and a variety

of formats, including FITS (Peloton et al., 2018). Finally, a JupyterHub facade provides a

user-friendly entry-point to the system. Additionally, we make it possible for IT groups (or

advanced users) to easily deploy this entire system for use within their departments, as an

out-of-the-box solution for cloud-based astronomical data analysis.

The combination of these technologies allows the researcher to migrate “classic” subset-



11

download-analyze workflows with little to no learning curve, while providing an upgrade

path towards large-scale analysis. We validate the approach by deploying a cloud-based

platform for accessing and analyzing a 1 billion+ light-curve catalog from the ZTF (a

precursor to LSST), and demonstrate it can be successfully used for exploratory science.

2.2 A Platform for User-Friendly Scalable Analysis of Large Astronomical

Datasets

We begin by introducing the properties of cloud systems that make them especially suitable

for scalable astronomical analysis platforms, discuss the overall architecture of our platform,

its individual components, and performance.

2.2.1 The Cloud

Traditionally, computing infrastructure was acquired and maintained close to the group

utilizing the resource. For example, a group led by a faculty member would purchase and

set up one or more machines for a particular problem, or (on a larger scale) a university

may centralize computing resources into a common cluster, shared with the larger campus

community. These acquisitions – so-called “on-premise” computing – are capital heavy

(require a large initial investment), require local IT knowledge, and allow for a limited

variety of the systems being purchased (e.g., a generic Linux machine for a small group, or

standardized types of nodes for an HPC cluster).

Cloud services move this infrastructure (and the work to maintain it) away from the

user, and centralize it with the cloud provider. The infrastructure is provided as a ser-

vice: individual machines, entire HPC clusters, as well as higher-order services (databases,

filesystems, etc.) are rented for the time the resource is needed, rather than purchased.

They are billed proportional to usage; virtual machines are typically rented by the sec-

ond, virtual networks priced by bandwidth usage, and virtual storage priced by storage size

per unit time. These components are provisioned by the user on-demand, and are built to

be “elastic.” One can typically rent several hundred virtual machines and provision ter-

abytes of storage space with an expectation that it will be delivered within minutes and

then release these resource back to the cloud provider at will. This usage and pricing model



12

o↵ers the unique benefit of providing access to a↵ordable computing at scale. One can rent

hundreds of virtual machines for a short period of time (just the execution time of a science

workflow) without investing in the long-term support of the underlying infrastructure. In

addition, cloud providers typically o↵er managed storage solutions to support reading/writ-

ing data to/from all of these machines. These so-called “object stores” are highly available,

highly durable, and highly scalable stores of arbitrarily large data volumes. For example,

Amazon Simple Storage Service (Amazon S3) provides scalable, simultaneous access to data

through an Application Programming Interface (API) over a network.2 S3 supports very

high throughput at the terabit-per-second level, assuming storage access patterns are opti-

mized.3 Once a solution for scalable storage is added to the mix, cloud computing systems

start to resemble the traditional supercomputers many scientists are already familiar with

for running simulations and performing large-scale data analysis.

2.2.2 Orchestrating cloud applications: Kubernetes

The pain point that remains in managing and developing applications for the cloud is the

problem of orchestration: it can become burdensome to write custom software for provi-

sioning and managing cloud resources, and there is a danger of cloud “lock-in” occurring

when software applications become too strongly coupled with the cloud provider’s API. The

open source community has developed orchestration tools, like Kubernetes, to address this

issue.4

Kubernetes is used to schedule software applications packaged in Docker images and run

as Docker containers on a cluster of computers (physical or virtual machines) while handling

requests for, and provisioning, cloud resources to support running those containers.5 Kuber-

netes provides a cloud-agnostic API, accessible over a network using HTTP(S), to describe

2Amazon S3 uses a REST API with HTTP.

3This is detailed in the S3 documentation: https://docs.aws.amazon.com/AmazonS3/latest/dev/
optimizing-performance.html

4The Kubernetes documentation provides a thorough and beginner-friendly introduction to the software:
https://kubernetes.io/docs/

5Docker isolates software programs at the level of the operating system, in contrast to virtual machines
which isolate operating systems from one another at the hardware level. See https://www.docker.com/
and https://docs.docker.com/ for more information.

https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html
https://kubernetes.io/docs/
https://www.docker.com/
https://docs.docker.com/


13

cloud resources as “representational state transfer” (REST) objects. For example, cluster

storage is described using “Persistent Volume” objects, requests for that storage use “Per-

sistent Volume Claim” objects, and networking utilities like routing, port-forwarding, and

load balancing use “Service” objects. An application that runs using one or more containers

is specified using a “Pod” object. If the application requires it, the Pod object can reference

storage objects and service objects by name to link an application to these resources. In

addition, the Pod object allows one to impose CPU and memory limits on an application

or assign the application to a certain node, among other features. Each Kubernetes object

is described using YAML, a human-readable format for storing configuration information

(lists and dictionaries of strings and numbers).6 Figure 2.1 shows an example set of YAML-

formatted text describing Kubernetes objects that together would link a Jupyter notebook

server backed by a 10 GiB storage device to an internet-accessible URL.

The Kubernetes core service, a set of software called the control plane, is responsible

for maintaining an API server accessible within (and potential externally to) the cluster,

maintaining a database of the objects created so far, assigning pods (applications) to nodes

in the cluster in a way that respects their constraints, keeping track of the general state of

the cluster, and handling aspects of networking within the cluster and through the cloud

provider. Additional components of the Kubernetes core code (or third-party plugins)

handle provisioning of virtual hardware from the cloud provider to satisfy requirements that

cannot be met by current cluster resources. As an example on AWS, an outstanding request

for a Service requiring a load balancer will be fulfilled by creating an AWS Elastic Load

Balancer (ELB) or Application Load Balancer (ALB). Similarly, an outstanding request for a

Persistent Volume will be fulfilled by creating an Amazon Elastic Block Store (EBS) volume.

Finally, applications can be scheduled on the cluster that modify the cluster state. In

particular, the Kubernetes Cluster Autoscaler interacts with the cloud provider to terminate

underutilized nodes or add new nodes when there are pods that cannot be scheduled given

the current number of nodes.7 The handling of hardware provisioning from the cloud

6See https://yaml.org/ for specification and implementations.

7https://github.com/kubernetes/autoscaler

https://yaml.org/
https://github.com/kubernetes/autoscaler


14

apiVersion: v1 
kind: PersistentVolumeClaim
metadata: 
name: my-volume-claim

spec: 
resources: 
requests: 
storage: 10Gi 
storageClassName: ebs

apiVersion: apps/v1
kind: Deployment
metadata:
name: jupyter-notebook

spec:
replicas: 1
selector:
matchLabels:
app: notebook-pod

template:
metadata:
labels:
app: notebook-pod

spec:
containers:
- name: notebook
image: jupyter/scipy-notebook
ports:
- containerPort: 8888
volumeMounts:
- mountPath: “/home/jovyan”
name: my-volume

volumes:
- name: my-volume

persistentVolumeClaim:
claimName: my-volume-claim

apiVersion: v1
kind: Service
metadata:
name: my-load-balancer

spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 8888
protocol: TCP
name: http

selector:
app: notebook-pod

Network Application

Storage

Figure 2.1: An illustration of the structure and composition of YAML-formatted text spec-

ifying Kubernetes objects that together create a functional and internet-accessible Jupyter

notebook server. The Jupyter notebook application is created as a Pod on the cluster

(right). Networking objects (top left) specify how a public-facing load balancer can be

connected to the Jupyter notebook Pod (notebook-pod) on a certain port (8888). Storage

objects trigger the creation of, for example, hard drive disk space from the cloud provider

(bottom left). Colored text indicate how the files are linked to support one another: blue

indicates how network and application are linked, orange how application and storage are

linked, and green how storage volumes are mounted into the filesystem of the application.



15

provider by administrative software in the Kubernetes control plane, through Kubernetes

plugins, and through applications running in the cluster allows additional user applications

to remain decoupled from the cloud provider’s API.

2.2.3 System Architecture

Cloud systems o↵er unique infrastructure elements that help support a system for scalable

science analysis. Virtual machines can be rented in the hundreds or thousands to support

large computations, each accessing data in a scalable manner from a managed service.

Orchestration layers, like Kubernetes, ease the process of running science software on cloud

resources. In this section, we discuss how we leverage cloud infrastructure to build such a

platform. Underlying this platform are four key components:

1. An interface for computing. We use the Jupyter ecosystem: a JupyterHub deployment

based on the zero-to-jupyterhub project that creates Jupyter notebook servers on

our computing infrastructure for authenticated users. A Jupyter notebook server

provides a web interface to interactively run code on a remote machine alongside a

set of pre-installed software libraries.8

2. A scalable analytics engine. We use Apache Spark, an industry standard tool for dis-

tributed data querying and analysis, and the Astronomy eXtensions to Spark (AXS).

3. A scalable storage solution. We use Amazon Simple Storage Solution (S3). Amazon

S3 is a managed object store that can store arbitrarily large data volumes and scale

to an arbitrarily large number of requests for this data.

4. A deployment solution. We’ve developed a set of Helm charts and bash scripts au-

tomating the deployment of this system onto the AWS cloud.9

8See https://zero-to-jupyterhub.readthedocs.io/ and https://github.com/jupyterhub/
zero-to-jupyterhub-k8s.

9For Helm, see https://helm.sh/.

https://zero-to-jupyterhub.readthedocs.io/
https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://helm.sh/


16

Each of these components are largely disconnected from one another and can be mixed

and matched with other drop-in solutions.10 Aside from the deployment solution, each of

these components are comprised of simple processes communicating with each other through

an API over a network. This means that each solution for (1), (2), and (3) is largely agnostic

to the choice of running on a bare-metal machine, inside a virtual machine (VM), inside a

Linux container, or using a managed cloud service as long as each component is properly

networked.

Figure 2.2 shows the state of the Kubernetes cluster during normal usage of a platform

created with our Helm chart as well as the pathway of API interactions that occur as a user

interacts with the system. A user gains access to the system through a JupyterHub, which

is a log-in portal and proxy to one or more managed Jupyter notebook servers spawned by

the JupyterHub. This notebook server is run on a node of the Kubernetes cluster, which

can be constrained by hardware requirements and/or administrator provided node labels.

A proxy forwards external authenticated requests from the internet to a user’s notebook

server. Users can use the Apache Spark software, which is pre-installed on their server, to

create a Spark cluster using the Spark on Kubernetes API. The user can also access their

running notebook server using a Secure Shell (SSH) client.

An Interface to Computing

The Jupyter notebook application, and its extension Jupyter lab, provide an ideal en-

vironment for astronomers to access, manipulate, and visualize data sets. The Jupyter

notebook/lab applications, although usually run locally on a user’s machine, can run on a

remote machine and be accessed through a JupyterHub, a web application that securely

forwards authenticated requests directed at a central URL to a running notebook server.11

10Zepplin notebooks, among other tools, compete with Jupyter notebooks for accessing remote computers
for analysis and data visualization. Dask is a competing drop-in for Apache Spark that scales Python code
natively. A Lustre filesystem could be a drop-in for Amazon S3. Amazon EFS, a managed and scalable
network filesystem, is also an option. Kustomize is an alternative to Helm.

11As an example, one may access a JupyterHub at the URL https://hub.example.com which, if you are
an authenticated user, will forward through a proxy to https://hub.example.com/user/username. When
running a notebook on a local machine, there is no access to a JupyterHub and the single user server is
served at (typically) http://localhost:8888.



17

proxyhub

jupyter-user-n

jupyter-user-1

JupyterHub

Pods

cluster-autoscaler

nfs-server-provisioner
Resource 
Managers

User

(b)

(c)

(f)

(g)

(d)

(a)

user-n-pyspark-exec-1

user-n-pyspark-exec-m

Spark Cluster

mariadb-server

(e)

ssh-server

(h)

Legend
HTTP / Jupyter API
Spark API
Kubernetes API
AWS API
OpenSSH API

(a): User’s web connection to system
(b): Create notebook pods
(c): Create Spark executor pods
(d): Spark driver and executor 
communication
(e): Access to catalog metadata
(f): List unscheduable pods
(g): Request more virtual machines
(h): User’s SSH connection to server

AWS

Figure 2.2: A diagram of the essential components of the Kubernetes cluster when the

science platform is in use. Each box represents a single Kubernetes Pod scheduled on the

cluster. The colors of the boxes and the dashed ovals surrounding the three groups are

for visualization purposes only; each Pod exists as an independent entity to be scheduled

on any available machines. The colored paths and letter markers indicate the pattern

of API interactions that occur when users interact with the system. (a) shows a user

connecting to the JupyterHub from the internet. The JupyterHub creates a notebook server

(jupyter-user-1) for the user (b). The user creates a Spark cluster using their notebook

server as the location for the Spark driver process (c). Scheduled Spark executor Pods

connect back to the Spark driver process running in the notebook server (d). The Spark

driver process accesses a MariaDB server for catalog metadata (e). In the background, the

Kubernetes cluster autoscaler keeps track of the scheduling status of all Pods (f). At any

point in (a)-(d), if a Pod cannot be scheduled due to a lack of cluster resources, the cluster

autoscaler will request more machines from AWS to meet that need (g). Optionally, the

user can connect to their running server with SSH (h).



18

The authentication layer of JupyterHub allows us to block non-authenticated users from

the platform. Our science platform integrates authentication through GitHub, allowing

us to authenticate both individual users by their GitHub usernames and groups of users

through GitHub Organization membership. For example, the implementation of this science

platform described in Section 2.3 restricts access to the platform and its private data to

members of the dirac-institute and ZwickyTransientFacility GitHub organizations.

Users can choose to bypass the Jupyter computing environment by accessing their run-

ning notebook server with a SSH client. The SSH client also facilitates file transfers between

the user and their notebook server when using utilities such as scp or rsync. Access through

SSH is implemented using a “jump host” setup: a single, always-running container on the

cluster runs an OpenSSH server that is networked to the internet. When the user’s notebook

server is running, it additionally runs an OpenSSH server in the background. The user adds

a cryptographic public key to a filesystem shared between the notebook server and jump

host. The user connects to the jump host with their username and a cryptographic private

key stored on their local machine. From the jump host, the user can connect to their run-

ning notebook server with no additional configuration. A properly formatted invocation of

the ssh command can do this in one step. Additional public and private keys are generated

automatically for each host and each user and placed on a shared filesystem with correct

permissions.

Finally, a Virtual Network Computing (VNC) desktop is made available to the user

for using graphical applications outside of the Jupyter notebook. The VNC desktop is

provided through the Jupyter Remote Desktop Proxy software, an extension to the Jupyter

notebook server. The in-browser desktop emulation o↵ers reasonable interaction latencies

over a typical internet connection.

A Scalable Analytics Engine

Apache Spark (Spark) is a tool for general distributed computing, with a focus on querying

and transforming large amounts of data, that works well in a shared-nothing, distributed

computing environment. Spark uses a driver/executor model for executing queries. The



19

driver process splits a given query into several (1 to thousands) independent tasks which are

distributed to independent executor processes. The driver process keeps track of the state of

the query, maintains communication with its executors, and coalesces the results of finished

tasks. Since the driver and executor(s) only need to communicate with each other over the

network, executor processes can remain on the same machine as a driver, to take advantage

of parallelism on a single machine, or be distributed across several other machines in a

distributed computing context.12 The API for data transformation, queries, and analysis

remains the same whether or not the Spark engine executes the code sequentially on a local

machine or in parallel on distributed machines, allowing code that works on a laptop to

naturally scale to a cluster of computers.

To support astronomy-specific operations, Zečević et al. (2019) have developed the As-

tronomy eXtensions to Spark (AXS), a set of additional Python bindings to the Spark API

to ease astronomy-specific data queries such as cross matches and sky maps in addition to

an internal optimization for speeding up catalog cross matches using the ZONES algorithm,

described in Zečević et al. (2019). AXS is included in our science platform to ease the use

of Spark for astronomers and also provide fast cross-matching capability between catalogs.

AXS requires that tabular data is stored Apache Parquet file format, a compressed

column-oriented data storage format.13 The columnar nature and partitioning of the files

in Parquet format allows for very fast reads of large tables. For example, one can obtain

a subset of just the “RA” column of a catalog without scanning through all parts of all

of the files. Apache Spark’s flexible functionality for accessing data of di↵erent formats,

exposed in Python through pyspark.sql.DataFrame.read, allows one to convert a broad

range of catalogs in di↵erent formats – including FITS (Peloton et al., 2018) – to Par-

quet. AXS additionally requires that catalogs stored in Parquet be similarly partitioned in

order to perform fast cross-matches. AXS provides a single function, exposed in Python

as AxsCatalog.save, that will re-partition a data frame read using Spark, save it in Par-

quet format, and make the table available to a user through its Apache Hive metastore

12Creating executor processes on a single machine isn’t done in practice; instead, Spark supports multi-
threading in the driver process that replace the external executor process(es) when using local resources.

13See https://parquet.apache.org/

https://parquet.apache.org/


20

database.14

A Scalable Storage Solution

Amazon S3 is a scalable object store with built-in backups and optional replication across

geographically distinct AWS regions. Files are placed into a S3 bucket, a flat filesystem that

scales well to simultaneous access from thousands of individual clients. Files are accessed

over the network using a REST API over HTTP, supporting actions to retrieve and create

new objects in the bucket. The semantics of the S3 API are not compliant with the POSIX

specification that typical filesystems adhere to. However, there are projects, such as s3fs,

that allow for mounting of the S3 object store as a traditional filesystem and provide an

interface layer that makes the filesystem largely POSIX compliant.15 The names of S3

buckets are globally unique, which makes public and private sharing of data in a bucket

easy: a user anywhere in the world can access public data from an S3 bucket by specifying

only its name. To access private data, the user must additionally authenticate them self with

AWS. Access control lists provide object-level permissions for read/write access to certain

users and the public. Additionally, there is no limit to the amount of data that can be

stored, although individual files must be no larger than 5 TB, and individual upload actions

cannot exceed 5 GB. In this platform, we store and access TB+ tabular datasets stored in

Parquet format with a common partitioning scheme, making the data AXS compatible.

A deployment solution

We have created a deployment solution for organized creation and management of each

of these three components. The code for this is stored at a GitHub repository accessible

at https://github.com/astronomy-commons/science-platform. Files referenced in the

following code snippets assume access at the root level of this repository.

To create and manage our Kubernetes cluster, we use the eksctl software.16 This

14See https://hive.apache.org/

15See https://github.com/s3fs-fuse/s3fs-fuse

16See https://eksctl.io/

https://github.com/astronomy-commons/science-platform
https://hive.apache.org/
https://github.com/s3fs-fuse/s3fs-fuse
https://eksctl.io/


21

software defines configuration of the Amazon Elastic Kubernetes Service (EKS) from YAML-

formatted files. An EKS cluster consists of a managed Kubernetes master node that runs

the control plane software along with a set of either managed or unmanaged nodegroups

backed by Amazon Elastic Compute Cloud (EC2) virtual machines which the applications

scheduled on the cluster.17

To help us manage large numbers of Kubernetes objects, we use Helm, the “package

manager for Kubernetes.” Helm allows Kubernetes objects described as YAML files to be

templated using a small number of parameters or “values,” also stored in YAML. Helm pack-

ages together YAML template files and their default template values in Helm “charts.” Helm

charts can have versioned dependencies on other Helm charts to compose larger charts from

smaller ones. After cluster creation, we use Helm to install the cluster-autoscaler-chart,

which deploys the Kubernetes Cluster Autoscaler application. The cluster autoscaler scales

the number of nodes in the Kubernetes cluster up or down when resources are too con-

strained or underutilized.

We have created a Helm chart to manage and distribute versioned deployments of our

platform. This chart depends on three sub-charts:

1. The zero-to-jupyterhub chart, a standard and customizable installation of Jupyter-

Hub on Kubernetes. The zero-to-jupyterhub chart uses Docker images from the

Jupyter Docker Stacks by default and uses the KubeSpawner for creating Jupyter

notebook servers using the Kubernetes API directly.18

2. The nfs-ganesha-server-and-external-provisioner chart, which provides a net-

work filesystem server and Kubernetes-compliant storage provisioner.19

3. A mariadb chart, which provides a MariaDB server and is used as an Apache Hive

17Managed nodes are EC2 virtual machines with a tighter coupling to an EKS cluster. Unmanaged nodes
allow for more configuration by an administrator.

18See https://jupyter-docker-stacks.readthedocs.io/ and https://jupyterhub-kubespawner.
readthedocs.io/

19See https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner

https://jupyter-docker-stacks.readthedocs.io/
https://jupyterhub-kubespawner.readthedocs.io/
https://jupyterhub-kubespawner.readthedocs.io/
https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner


22

metadata store for AXS.20

The Helm chart contains configuration of the three sub-charts. For example, the chart is

configured to use a Docker image with installations of Spark/AXS, the OpenSSH clien-

t/server, and Jupyter notebook server extensions like the Jupyter Remote Desktop Proxy

when the JupyterHub starts a notebook server. Additional configuration in the chart pro-

vides instructions for mounting the network filesystem, instructions for setting up the Hive

metastore, defines reasonable defaults for using Spark on Kubernetes, and defines notebook

server startup-scripts that start the SSH server and set up the user’s space on the filesystem

(such as copying example notebooks to the user’s home directory).

2.2.4 Providing a shared filesystem with granular access control

We found it to be critically important to provide a way for users to easily share files with

one another. The default Helm chart and KubeSpawner configuration creates a Persistent

Volume Claim backed by the default storage device configured for the Kubernetes cluster

for each single user server, allowing a user’s files to persist beyond the lifetime of their

server. For AWS, the default storage device is an EBS volume, roughly equivalent to a

network-connected SSD with guaranteed input/output capabilities. By default, this volume

is mounted at the filesystem location /home/jovyan in the single user container. This setup

makes it di�cult for the users’ results to be shared with others because: a) they are isolated

to their own disk, and b) by default all users share the same username and IDs, making

granular access control extremely di�cult.

To resolve these issues, we provisioned a network filesystem (NFSv4) server using the

nfs-ganesha-server-and-external-provisioner Helm chart, creating a centralized lo-

cation for user files and enabling file sharing between users. To solve the problem of access

control, each notebook container is started with two environment variables: NB USER set

equal to the user’s GitHub username, and NB UID set equal to the user’s GitHub user id.

The start-up scripts included in the default Jupyter notebook Docker image use the values

of these environment variables to create a new Linux user, move the home directory loca-

20See https://mariadb.org/ and https://github.com/bitnami/charts/tree/master/bitnami/mariadb

https://mariadb.org/
https://github.com/bitnami/charts/tree/master/bitnami/mariadb


23

tion, update home directory ownership, and update home directory permissions from their

default values. Figure 2.3 shows how the NFS server is mounted into single user pods to

enable file sharing. The NFS server is mounted at the /home directory on the single user

server, and a directory is created for the user at the location /home/<username>. Each

user’s directory is protected using UNIX-level file permissions that prevent other users from

making unauthorized edits to their files. System administrators can elevate their own per-

missions (and access the back-end infrastructure arbitrarily) to edit user files at will. The

UNIX user ids (UIDs) are globally unique, since they are equal to a unique GitHub ID.

In initial experiments, we used the managed AWS Elastic filesystem (EFS) service to

enable file sharing. Using the managed service provides significant benefits, including un-

limited storage, scalable access, and automatic back-ups. However, EFS had a noticeable

latency increase per Input/Ouput operation compared to the EBS-backed storage of the

Kubernetes-managed NFS server. In addition, EFS storage is 3⇥ more expensive than EBS

storage.21

In addition to storing home directories on the NFS server, we have an option to store

all of the science analysis code (typically managed as conda environments) on the NFS

server. This has several advantages relative to the common practice of keeping the code in

Jupyter notebook Docker images. The primary advantage is that this allows for updating of

installed software in real-time, and without the need to re-start user servers. A secondary

advantage is that the Docker images become smaller and faster to download and start up

(thus improving the user experience). The downside is decreased scalability: the NFS server

includes a central point, shared by all users of the system. Analysis codes are often made

up of thousands of small files, and a request for each file when starting a notebook can lead

to large loads on the NFS server. This load increases when serving more than one client,

and may not be a scalable beyond serving a few hundred users.

For systems requiring significant scalability, a hybrid approach of providing a base conda

environment in the Docker image itself in addition to mounting user-created and user-

21The cost of EFS is $0.30/GB-Month vs $0.10/GB-Month for EBS. Lifecycle management policies for
EFS that move infrequently used data to a higher-latency access tier can reduce costs to approximately
the EBS level.



24

Network File 
System

jupyter-user-1

/

/home

/home/user-1

/opt/conda/envs

/opt/conda/share/jupyter/kernels

UID: 1, GID: 100
Block Storage 

on Host

user-1-pyspark-exec-1

/

/home

/home/user-1

/opt/conda/envs

/opt/conda/share/jupyter/kernels

UID: 1, GID: 100
Block Storage 

on Host

jupyter-user-2

/

/home

/home/user-2

/opt/conda/envs

/opt/conda/share/jupyter/kernels

UID: 2, GID: 100
Block Storage 

on Host

Notebook / Data sharing

Code / Environment sharing

Figure 2.3: An illustration of the filesystem within each container spawned by the Jupyter-

Hub (jupyter-user-1 and jupyter-user-2) and by the user in the creation of a distributed

Spark cluster. Most of the filesystem (the root directory /) exists on an ephemeral storage

device tied to the host machine. The home directories, conda environment directories, and

Jupyter kernel directories within each container are mounted from an external NFS server.

This file structure allows for sharing of Jupyter Notebook files and code environments with

other users and with a user’s individual Spark Cluster. UNIX user ids (UID) and group ids

(GID) are set to prevent unauthorized data access and edits.



25

managed conda environments and Jupyter kernels from the NFS server is warranted. This

allows for fast and scalable access to the base environment while also providing the benefit

of shared code bases that can be updated in-place by individual users.

2.2.5 Providing Optimal and Specialized Resources

Some users require additional flexibility in the hardware available to match their computing

needs. To accommodate this, we have made deployments of this system that allow users

to run their notebooks on machines with more CPU or RAM or with specialty hardware

like Graphics Processing Units (GPUs) as they require. This functionality is restricted to

deployments where we trust the discretion of the users and is not included in the demon-

stration deployment accompanying this manuscript.

Flexibility in hardware is provided through a custom JupyterHub options form that is

shown to the user when they try to start their server. An example form is shown in Fig. 2.4.

Several categories of AWS EC2 instances are enumerated with their hardware and costs

listed. Hardware is provisioned in terms of vCPU, or “virtual CPU,” roughly equivalent

to one thread on a hyperthreaded CPU. In this example, users can pick an instance that

has as few resources as 2 vCPU and 1 GiB of memory at the lowest cost of $0.01/hour

(the t3.micro EC2 instance), to a large-memory machine with 96 vCPU and 768 GiB of

memory at a much larger cost of $6.05/hour (the r5.24xlarge EC2 instance). In addition,

nodes with GPU hardware are provided as an option at moderate cost (4 vCPU, 16 GiB

memory, 1 NVIDIA Tesla P4 GPU at $0.53/hour; the g4dn.xlarge EC2 instance). These

GPU nodes can be used to accelerate code in certain applications such as image processing

and machine learning. For this deployment, the form is configured to default to a modest

choice with 4 vCPU and 16 GiB of memory at a cost of $0.17/hour (the t3.xlarge EC2

instance). This range of hardware options and prices will change over time; the list provided

is simply an example of the on-demand heterogeneity provided via AWS.



26

Figure 2.4: A screenshot of the JupyterHub server spawn page. Several options for comput-

ing hardware are presented to the user with their hardware and costs enumerated. Of note

is the ability to spawn GPU instances on demand. When a user selects one of these options,

their spawned Kubernetes Pod is tagged so that it can only be scheduled on a node with the

desired hardware. If a node with the required hardware does not exist in the Kubernetes

cluster, the cluster autoscaler will provision it from the cloud provider (introducing a ⇠5

minute spawn time).



27

2.2.6 Multi-cloud support

It is unlikely, and perhaps undesirable, that all scientists and organization will agree to use

a single cloud provider when storing data, accessing computing resources, or deploying our

system. There are many clouds outside of Amazon Web Services that scientists may have

already chosen for computing and data storage based on factors such as the availability

of compute credits, academic institutional tie-ins, convenience, familiarity, or di↵erences in

product o↵erings.22 Therefore, it is necessary to think about and accommodate multi-cloud

support in our architecture. The system architecture outlined in 2.2.3 is sensitive in two

places to the choice of cloud provider: the deployment solution and the storage solution.

The deployment solution we use is tied to the choice of cloud provider only during

creation of the Kubernetes cluster with the deployment scripts. Helm interacts with the

Kubernetes cluster directly and not the cloud provider, so it remains cloud-agnostic. For

cloud providers that o↵er a managed Kubernetes service, they typically o↵er command line

interface (CLI) tools for creating and managing a Kubernetes cluster. In other cases, tools

like kops and Kubespray enable cluster creation on a wide variety of public clouds as well

on private computing clusters. Our deployment scripts can be extended in the future to

accommodate other clouds using these tools.

The storage solution has a tighter coupling to the cloud provider that leads to potential

lock-in with the cloud provider as well as issues with sharing data across clouds. While we

have chosen Amazon S3 as our storage solution, similar object storage products from other

cloud providers can be used. Apache Spark can access data stored in any object store that

uses the S3 API. Some cloud providers o↵er object storage products that expose APIs that

are compliant or complementary to the S3 API, which makes both accessing data between

clouds feasible. For example, both Google Cloud Platform (GCP) and DigitalOcean provide

storage services that have some or full interoperability with S3. This means a user can expect

to deploy our system on a cloud with a compatible object store and use that object store

with few or no changes in how the data are accessed. However, transferring large amounts

22Google Cloud Platform (GCP), Microsoft Azure, IBM Cloud, DigitalOcean, and the National Science
Foundation funded Jetstream Cloud is a short list of cloud providers.



28

of data between clouds through the internet (referred to as “egress”) remains very costly,

making multi-cloud data access infeasible in practice. AWS quotes data transfer fees of

$0.05-$0.09 per GB depending on the total volume transferred in a month. This means

that a user who has deployed our system in a cloud other than AWS cannot expect to

access large amounts of data stored within Amazon S3. This sets the expectation that our

system will be deployed in the cloud where a user’s data and potentially other relevant and

desirable data sets are located. Notably, this challenge persists, at a smaller scale, within

an individual cloud due to data transfer costs between geographically distinct data centers

(often called regions). AWS quotes data transfer costs between regions at $0.01-$0.02 per

GB. However, unless very low latency for data access from many countries/continents is

required, a user or organization can likely choose and stick to a single region when storing

data and acquire computing resources.

Slightly di↵erent system architectures allow for easier multi-cloud data access. For ex-

ample, the Jupyter Kernel Gateway and Jupyter Enterprise Gateway projects can be used

to access computing resources that are distributed across multiple clusters.23 Both of these

projects provide a method to create and access a running process in a remote cluster. This

allows one to create several Kubernetes clusters in di↵erent clouds where desirable datasets

are located and use a single JupyterHub as an entrypoint to access data stored in multiple

clouds. While this proposed solution does not bring the data closer together, which would

be desirable for applications that require jointly analyzing datasets from multiple sources

in di↵erent clouds, it does allow for baseline multi-cloud data access. True multi-cloud

data access is likely to remain infeasible without significant decreases in egress costs or

prior agreement on where to store data from dataset stakeholders. New services, such as

Cloudflare R2, that provide cloud storage with zero or near-zero egress cost brightens the

prospects for cheap, multi-cloud data transfer and would lift the requirement for consensus

among stakeholders.

23See https://github.com/jupyter-server/kernel_gateway and https://github.com/
jupyter-server/enterprise_gateway

https://github.com/jupyter-server/kernel_gateway
https://github.com/jupyter-server/enterprise_gateway
https://github.com/jupyter-server/enterprise_gateway


29

Name Data Size (GB) # Objects (109)

SDSS 65 0.77

AllWISE 349 0.81

Pan-STARRS 1 402 2.2

Gaia DR2 421 1.8

ZTF 4100 1.2

Total 5337 8.9

Table 2.1: The sizes of each of the catalogs available on the ZTF science platform along

with the total data volume.

2.3 A Deployment for ZTF Analyses

To demonstrate the capabilities of our system and verify its utility to a science user, we

deployed to enable the analysis of data from the Zwicky Transient Facility (ZTF). Section

2.3.1 describes the catalogs available through this deployment, Section 2.3.2 demonstrates

the typical access pattern to the data using the AXS API, and Section 2.3.3 showcases a

science project executed on this platform.

2.3.1 Catalogs available

Table 2.1 enumerates the catalogs available to the user in this example deployment. We

provide a catalog of light curves from ZTF, created from de-duplicated match files. The

most recent version of these match files have a data volume of ⇠ 4 TB describing light

curves of ⇠ 1 billion+ objects in the “g”, “r”, and “i” bands. In addition, we provide access

to catalogs from the data releases of the SDSS, Gaia, AllWISE, and Pan-STARRS surveys

for convenient cross matching. The system allows users to upload, cross match, and share

custom catalogs in addition to the ones provided, using the method described in 2.2.3.



30

2.3.2 Typical workflow

Users can query the available catalogs through the AXS/Spark Python API. For example,

a user loads a reference to the ZTF catalog like so:

import axs

from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

catalog = axs.AxsCatalog(spark)

ztf = catalog.load('ztf')

The spark object represents a Spark SQL Session and a connection to a Hive metastore

database, which stores metadata for accessing the catalogs. This object is used as a SQL

backend when creating the AxsCatalog, which acts as an interface to the available catalogs.

Catalogs from the metastore database are loaded by name using the AXS API. Data subsets

can be created by selecting one or more columns:

ztf_subset = ztf.select('ra', 'dec', 'mag_r')

AxsCatalog Python objects can be crossmatched with one another to produce a new catalog

with the crossmatch result:

gaia = catalog.load('gaia')

xmatch = ztf.crossmatch(gaia)

The xmatch object can be queried like any other AxsCatalog object. Spark allows for

the creation of User-Defined Functions (UDFs) that can be mapped onto rows of a Spark

DataFrame. The following example shows how a Python function that converts an AB

magnitude to its corresponding flux in janskys can be mapped onto all ⇠63 billion r-band

magnitude measurements from ⇠1 billion light curves in the ZTF catalog (in parallel):

from pyspark.sql.functions import udf

from pyspark.sql.types import ArrayType

from pyspark.sql.types import FloatType

import numpy as np



31

@udf(returnType=ArrayType(FloatType()))

def abMagToFlux(m):

flux = ((8.90 - np.array(m))/2.5)**10

return flux.tolist()

ztf_flux_r = ztf.select(

abMagToFlux(ztf['mag_r']).alias("flux_r")

)

2.3.3 Science case: Searching for Boyajian star Analogues

We test the ability of this platform to enable large-scale analysis by using it to search

for Boyajian star (Boyajian et al., 2016) analogs in the ZTF catalog. The Boyajian star,

discovered with the Kepler telescope, dips in its brightness in an unusual way. We intend

to search the ZTF catalog for Boyajian-analogs, other stars that have anomalous dimming

events, which will be fully described in Boone et al. (in prep.); here we limit ourselves

to aspects necessary for the validation of the analysis system. The main method for our

Boyajian-analog searches relies on querying and filtering large volumes of ZTF light curves

using AXS and Apache Spark in search of the dimming events. Objects of interest are then

spatially cross matched against the other catalogs available, for example to the Gaia catalog

to create a color-magnitude diagram and the AllWISE catalog to identify if there is excess

flux in the infrared. This presents an ideal science-case for our platform: the entire ZTF

catalog must be queried, filtered, analyzed, and compared to other catalogs repeatedly in

order to complete the science goals.

We wrote custom Spark queries that search the ZTF catalog for dimming events. After

filtering the light curves, we created a set of UDFs for model fitting that wrap the optimiza-

tion library from the scipy package. These UDFs are applied to the filtered light curves to

parallelize least-squared fitting routines of various models to the dipping events. Figure 2.5

shows an outline of this science process using AXS.

The use of Apache Spark speeds up queries, filtering, and fitting of the data tremendously

when deployed in a distributed environment. We used a Jupyter notebook on our platform



32

catalog = axs.AxsCatalog(spark)
df = catalog.load("ztf")

dippers = find_and_filter_dips(df)

fits = fit_light_curves(dippers)[3]

[2]

[1]

Figure 2.5: An example analysis (boiled down to two lines) that finds light curves in the

ZTF light curve catalog with a dimming event. (1) shows how the ZTF catalog is loaded as

a Spark DataFrame (df), (2) shows the product of filtering light curves for dimming events,

and (3) shows the result of fitting a model to the remaining light curves. This process

exemplifies that analyses can often be represented as a filtering and transformation of a

larger dataset, a process that Spark can easily execute in parallel.



33

to allocate a Spark cluster of consisting of 96 t3.2xlarge EC2 instances. Each instance

had access to 8 threads running on an Intel Xeon Platinum 8000 series processor with 32

GiB of RAM, creating a cluster with 768 threads and 3,072 GiB of RAM. We used the

Spark cluster to complete a complex filtering task on the full 4 TB ZTF data volume in

⇠three hours. The underlying system was able to scale to full capacity within minutes, and

scale down once the demanding query was completed just as fast, providing extreme levels

of parallelism at minimal cost. The total cost over the time of the query was ⇠$100.

This same complex query was previously performed on a large shared-memory machine

at the University of Washington with two AMD EPYC 7401 processors and 1,024 GiB of

RAM. The query utilized 40 threads and accessed the catalog from directly connected SSDs.

This query previously took a full two days to execute on this hardware in comparison to the

⇠three hours on the cloud based science platform.24 Performing an analysis of this scale

would not be feasible if performed on a user’s laptop using data queried over the internet

from the ZTF archive.

In addition, the group was able to gain the extreme parallelism a↵orded by Spark with-

out investing a significant amount of time writing Spark-specific code. The majority of

coding time was spent developing science-motivated code/logic to detect, describe, and

model dipping events within familiar Python UDFs and using familiar Python libraries. In

alternative systems that provide similar levels of parallelism, such as HPC systems based

on batch scheduling, a user would typically have to spend significant time altering their

science code to conform with the underlying software and hardware that enables their code

to scale. For example, they may spend significant time re-writing their code in a way that

can be submitted to a batch scheduler like PBS/Slurm, or spend time developing a leader/-

follower execution model using a distributed computing/communication framework such as

OpenMPI. Traditional batch scheduling systems running on shared HPC resources typically

have a queue that a user’s program must wait in before execution. In contrast, our platform

scales on-demand to the needs of each individual user.

This example demonstrates the utility of using cloud computing environments for science:

24The speedup realized of 48 hours/3 hours = 16⇥ is roughly consistent with the increase in threads
available to execute the query 768 threads/40 threads = 19.2⇥.



34

when science is performed on a platform that provides on-demand scaling using tools that

can distribute science workloads in a user-friendly manner, time to science is minimized.

2.4 Scalability, Reliability, Costs, and User Experience

Our system is expected to scale both in the number of simultaneous users and to the

demands of a single user’s analysis. In the former case, JupyterHub and its built in proxy

can scale to access by hundreds of users as its workload is limited to routing simple HTTP

requests. In the latter case, data queries by individual users are expected to scale to very

many machines, allowing for fast querying and transforming of very large datasets. Section

2.4.1 summarizes tests to verify this claim.

2.4.1 Scaling Performance

We performed scaling tests to understand and quantify the performance of our system.

We tested both the “strong scaling” and “weak scaling” aspects of a simple query. Strong

scaling indicates how well a query with a fixed data size can be sped up by increasing the

number of cores allocated to it. On the other hand, weak scaling indicates how well the

query can scale to larger data sizes; it answers the question “can I process twice as much

data in the same amount of time if I have twice as many cores?”

Figure 4.10 shows the strong and weak scaling of a simple query, the sum of the “RA”

column of a ZTF light curve catalog, which contains ⇠3⇥ 109 rows, stored in Amazon S3.

This catalog is described in more detail in section 2.3.1. In these experiments, speedup is

computed as

speedup = tref/tN (2.1)

where tref is the time taken to execute the query with a reference number of cores while tN

is the time taken with N cores. For the weak scaling tests, scaled speedup is computed as

scaled speedup = tref/tN ⇥ PN/Pref (2.2)

which is scaled by the problem size PN with respect to the reference problem size Pref. We

chose to scale the problem size directly with the number of cores allocated; the 96-core



35

query had to scan the entire catalog, while the 1-core query had to scan only 1/96 of the

catalog. Typically, the reference number of cores is 1 (sequential computing), however we

noticed anomalous scaling behavior at low numbers of cores, and so we set the reference to

16 in Fig. 4.10.

In our experiments, we used m5.large EC2 instances to host the Spark executor pro-

cesses, which have 2 vCPU and 8 GiB of RAM allocated to them. The underlying CPU is

an Intel Xeon Platinum 8000 series processor. The Spark driver process was started from a

Jupyter notebook server running on a t3.xlarge EC2 instance with 4 vCPU and 16 GiB of

RAM allocated to it. The underlying CPU is an Intel Xeon Platinum 8000 series processor.

Single m5.large EC2 instances have a network bandwidth of 10 Gbit/s while the t3.xlarge

instance has a network bandwidth of 1 Gbit/s. Amazon S3 can sustain a bandwidth of up to

25 Gbit/s to individual Amazon EC2 instances. Both the data in S3 and all EC2 instances

lie within the same AWS region, us-west-2. The m5.large EC2 instances were spread across

three “availability zones” (separate AWS data centers): us-west-2a, us-west-2b, and us-west-

2c. This configuration of heterogeneous instance types, network speeds, and even separate

instance locations represent a typical use-case of cloud computing and o↵ers illuminating

insight into performance of this system with these “worst-case” optimization steps.

The weak scaling test showed that scaled speedup scales linearly with the number of

cores provisioned for the query; twice the data can be processed in the same amount of

time if using twice the number of cores. In other words, for this query, the problem of

“big data” is solved simply by using more cores. The strong scaling test showed expected

behavior up to vCPU/16 = 5. Speedup increased monotonically with diminishing returns

as more cores were added. Speedup dropped from 2.50 with vCPU/16 = 5 to 2.05 with

vCPU/16 = 6, indicating no speedup can be gained beyond vCPU/16 = 5. Drops in

speedup in a strong scaling test are usually due to real world limitations of the network

connecting the distributed computers. As the number of cores increases, the number of

simultaneous communications and the amount of data shu✏ed between the single Spark

driver process and the many Spark executor processes increases, potentially reaching the

latency and bandwidth limits of the network connecting these computers.



36

Figure 2.6: Speedup computed in strong scaling (left) and weak scaling (right) experiments

of a simple Spark query that summed a single column of the ZTF catalog, ⇠3⇥ 109 rows.

Speedup is computed using Eq. 2.1 and scaled speedup is computed using Eq. 2.2. For each

value of vCPU, the query was executed several (3+) times. For each trial, the runtime was

measured and speedup calculated. Each point represents the mean value of speedup and

error bars indicate the standard deviation. The first row shows speedup computed using

sequential computing (vCPU = 1) to set the reference time and reference problem size. The

second row shows speedup computed using 16 vCPU to set the reference. With sequential

computing as the reference, we observe speedup that is abnormally high in both the strong

and weak scaling case. By adjusting the reference point to vCPU = 16, we find that we can

recover reasonable weak scaling results and expected strong scaling results for a small to

medium number of cores. Using the adjusted reference, we observe in the strong scaling case

diminishing returns in the speedup as the number of cores allocated to the query increases,

as expected. The weak scaling shows optimistic results; the speedup scales linearly with the

catalog size as expected.



37

2.4.2 Caveats to Scalability

As mentioned in section 2.2.4, the use of a shared NFS can limit scalability with respect to

the number of simultaneous users. We recommend the administrators of new deployments

of our platform consider the access pattern of user data and code on NFS to guarantee

scalability to their desired number of users. Carefully designed hybrid models of code and

data storage that utilize NFS, EFS, and the Docker image itself (stored on EBS) can be

developed that will likely allow the system scale to access from hundreds of users.

2.4.3 Reliability

In general, the system is reliable if individual components (i.e. virtual machines or software

applications) fail. Data stored in S3 are in practice 100% durable; at the time of writing,

AWS quotes “99.999999999% durability of objects over a given year.” Data stored in the

EBS volume backing the NFS server are similarly durable – 99.999% at the time of writing.

We choose to back up these data using Amazon EBS snapshots on a daily basis so we can

recover the volume in the event of volume deletion or undesirable changes.

Kubernetes as a scheduling tool is resilient to failures of individual applications. Ap-

plication failures are resolved by rescheduling the application on the cluster, perhaps on

another node, until a success state is reached. When the Kubernetes cluster autoscaler is

used, then the cluster becomes resilient to the failure of individual nodes. Pods that are

terminated from a node failure will become unschedulable, which will trigger the cluster

autoscaler to scale the cluster up to restore the original size of the cluster. For example, if

the user’s Jupyter notebook server is unexpectedly killed due to the loss of an EC2 instance,

it will re-launch on another instance on the cluster, with loss of only the memory contents

of the notebook server and the running state of kernels. The same is true of each of the

individual JupyterHub and Spark components. Apache Spark is fault-tolerant in its design,

meaning a query can continue executing if one or all of the Spark executors are lost and

restarted due to loss of the underlying nodes. Similar loss of the driver process (on the

Jupyter notebook server) results in the complete loss of the query.

We have run di↵erent instances of this platform for approximately three years in support



38

of science workloads at UW, the ZTF collaboration, a number of hackathons, and for the

LSST science collaborations. Over that period, we have experienced no loss of data or

nodes.

2.4.4 Costs

This section enumerates the costs associated with running this specific science platform.

Since cloud computing costs can be variable over time, the costs associated with this science

platform are not fixed. In this section, we report costs at the time of manuscript submission

as well as general information about resource usage so costs can be recomputed by the

reader at a later date.

We describe resource usage along two axes: interactive usage and core hours for data

queries. Interactive usage encompasses using a Jupyter notebook server for making plots,

running scripts and small simulations, and collaborating with others. Data queries en-

compass launching a distributed Spark cluster to access and analyze data provided on S3,

similarly to the methods described in Sec. 2.3.3. Equation 2.3 provides a formula for com-

puting expected monthly costs given the number of users Nu, the cost of each user node Cu,

the cost of the Spark cluster nodes Cs, the estimated time spent per week on the system tu,

and the number of node hours used by each user for Spark queries in a month ts:

Coststorage = Nu ⇥ 200⇥ 0.08⇥ (tu ⇥ (30/7) + ts),

Costmachines = Nu ⇥ (Cu ⇥ tu ⇥ (30/7) + Cs ⇥ ts),

Cost = Coststorage +Costmachines. (2.3)

Fixed in the equation are constants describing the amount (200 GB) and cost of ($0.08/GB/month)

of EBS-backed storage allocated for each virtual machines. Additionally, the term (30/7)

converts weekly costs to monthly costs. Node hours can be converted to core hours by

multiplying ts by the number of cores per node.

Table 2.2 enumerates the fixed costs of the system as well as the variable costs, calculated

using Eq. 2.3, assuming di↵erent utilization scenarios, varying the number of users (Nu),

the amount interactive usage per week (tu), and amount of Spark query core hours each

month (ts). The fixed costs of the system total to $328.51/month, paying for:



39

1. a small virtual machine, t3.medium, for the JupyterHub web application, proxy appli-

cation, and NFS server ($29.95/month) with 200 GB EBS-backed storage ($16.00/month);

2. two reserved nodes for incoming users at the default virtual machine size of t3.xlarge

($119.81/month) with 200 GB EBS-backed storage each ($32.00/month);

3. EBS-backed storage for the NFS server for user files ($8.00/month);

4. and storage of 5,337 GB of catalog data on Amazon S3 ($122.75/month).



40
V
ir
tu

a
l
M

a
ch

in
es

T
y
p
e

U
n
it

C
o
st

A
m
o
u
n
t

T
o
ta

l

S
er
vi
ce
s
(t
3
.
m
e
d
i
u
m
2
5
)

$0
.0
41

6/
h
ou

r/
n
od

e
1
n
od

e
$2
9.
95

/m
on

th

U
se
rs

(t
3
.
x
l
a
r
g
e
)

$0
.1
66

4/
h
ou

r/
n
od

e
2
n
od

es
+

va
ri
ab

le
$1
19

.8
1/

m
on

th
+

va
ri
ab

le

S
p
ar
k
C
lu
st
er
s
(t
3
.
x
l
a
r
g
e
S
p
ot

2
6
)

$0
.0
49

9/
h
ou

r/
n
od

e
va
ri
ab

le
va
ri
ab

le

S
to

ra
g
e

T
y
p
e

U
n
it

C
o
st

A
m
o
u
n
t

T
o
ta

l

C
at
al
og

s
(S
32

7
)

$0
.0
23

/G
B
/m

on
th

5,
33

7
G
B

$1
22

.7
5/

m
on

th

N
F
S
(E

B
S
2
8
)

$0
.0
8/

G
B
/m

on
th

10
0
G
B

$8
.0
0/

m
on

th

N
od

e
S
to
ra
ge

(E
B
S
)

$0
.0
8/

G
B
/m

on
th
/n

od
e

20
0
G
B
/n

od
e

$4
8.
00

/m
on

th
+

va
ri
ab

le

F
ix
ed

C
o
st
s

T
y
p
e

T
o
ta

l

V
ir
tu
al

M
ac
h
in
es

$1
49

.7
6/

m
on

th

S
to
ra
ge

$1
78

.7
5/

m
on

th

2
5
O
n
-D

em
an

d
p
ri
ci
n
g
in

re
gi
on

u
s
-
w
e
s
t
-
2
:
h
t
t
p
s
:
/
/
a
w
s
.
a
m
a
z
o
n
.
c
o
m
/
e
c
2
/
p
r
i
c
i
n
g
/
o
n
-
d
e
m
a
n
d
/

2
6
S
p
ot

p
ri
ci
n
g
in

re
gi
on

u
s
-
w
e
s
t
-
2
:
h
t
t
p
s
:
/
/
a
w
s
.
a
m
a
z
o
n
.
c
o
m
/
e
c
2
/
s
p
o
t
/
p
r
i
c
i
n
g
/

2
7
F
or

th
e
fi
rs
t
50

T
B
:
h
t
t
p
s
:
/
/
a
w
s
.
a
m
a
z
o
n
.
c
o
m
/
s
3
/
p
r
i
c
i
n
g
/

2
8
G
en

er
al

p
u
rp

os
e
S
S
D

(g
p
3)
:
h
t
t
p
s
:
/
/
a
w
s
.
a
m
a
z
o
n
.
c
o
m
/
e
b
s
/
p
r
i
c
i
n
g
/

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ebs/pricing/


41

A
ll

$3
28

.5
1/

m
on

th

V
a
ri
a
b
le

C
o
st
s

N
u
m
b
er

o
f
U
se
rs

In
te
ra

ct
iv
e
U
sa

g
e

(h
ou

rs
/w

ee
k/

u
se
r)

S
p
a
rk

Q
u
er

y
C
o
re

H
o
u
rs

(/
u
se
r/
m
on

th
)

T
o
ta

l

10

12
51

2
$1
89

.3
2/

m
on

th

20
48

$4
66

.2
7/

m
on

th

40
51

2
$4
15

.6
7/

m
on

th

20
48

$6
92

.6
2/

m
on

th

10
0

12
51

2
$1
,8
93

.2
2/

m
on

th

20
48

$4
,6
62

.7
1/

m
on

th

40
51

2
$4
,1
56

.6
9/

m
on

th

20
48

$6
,9
26

.1
8/

m
on

th



42
T
ab

le
2.
2:

F
ix
ed

an
d
va
ri
ab

le
co
st
s
as
so
ci
at
ed

w
it
h
ru
n
n
in
g

th
is

an
al
ys
is

p
la
tf
or
m

on
A
m
az
on

W
eb

S
er
vi
ce
s.

T
h
is

su
m
-

m
ar
y
p
ro
vi
d
es

co
st

es
ti
m
at
es

fo
r
re
nt
in
g
vi
rt
u
al

m
ac
h
in
e
an

d

st
or
in
g
d
at
a.

A
d
d
it
io
n
al

co
st
s
on

th
e
or
d
er

of
⇠
$1

0
d
u
e
to

n
et
w
or
k
co
m
m
u
n
ic
at
io
n
an

d
d
at
a
tr
an

sf
er

ar
e
ex
cl
u
d
ed

fr
om

th
es
e
re
su
lt
s.

R
ea
so
n
ab

le
lo
w

an
d
h
ig
h
es
ti
m
at
es

ar
e
ch
os
en

fo
r
th
e
nu

m
b
er

of
ac
ti
ve

u
se
rs

an
d
th
e
am

ou
nt

of
in
te
ra
ct
iv
e

u
sa
ge

th
ey

h
av
e
w
it
h
th
e
sy
st
em

.
T
h
e
nu

m
b
er

of
S
p
ar
k
qu

er
y

co
re

h
ou

rs
u
se
d
by

ea
ch

u
se
r
p
er

m
on

th
is

a
gu

es
s,

b
u
t
th
e

h
ig
h
en

d
es
ti
m
at
e
is
si
m
il
ar

to
th
e
co
re

h
ou

rs
u
se
d
d
u
ri
n
g
th
e

an
al
ys
is

in
S
ec
.
2.
3.
3.



43

Variable costs are harder to estimate, but Table 2.2 outlines several scenarios to get a

sense for the lower/upper limits to costs. 10 scientists using the platform for 4 hours per day

3 days per 7 day week, each using 512 core hours for Spark queries each month (equivalent

to 16 hours with a 32 core cluster) adds a cost of $189.32/month. On the other hand, 100

scientists using the platform for 8 hours per day 5 days per 7 day week, each using 2048

core hours for Spark queries each month (64 hours with a 32 core cluster) adds a cost of

$6, 926.18/month. There are additional costs on the order of ⇠$10 that we don’t factor into

this analysis. Specifically:

1. network communication between virtual machines in di↵erent availability zones, in-

troduced when scaling a Spark cluster across availability zones;

2. data transfer costs in the form of S3 GET API requests (data transfer to EC2 virtual

machines in the same region is free), introduced in each query executed against the

data;

3. and network communication between virtual machines and users over the internet,

introduced with each interaction in the Jupyter notebook through the user’s web

browser.

Each of these costs are minimal, and so we don’t include them in our analysis. However,

they are worth mentioning because they can scale to become significant. Spark queries

requiring GB/TB data shu✏ing between driver and executors should restrict themselves

to a single availability zone to avoid the costs of (1). Costs from (2) are unavoidable, but

care should be taken so no S3 requests occur between di↵erent AWS regions and between

AWS and the internet. Finally, (3) can balloon in size if one allows arbitrary file transfers

between Jupyter servers and the user or allows large data outputs to the browser.

The number of core hours for queries is a parameter that will need to be calibrated using

information about usage of this type of platform in the real-world. The upper limit guess of

2048 core hours per user per month is roughly equivalent to each user running an analysis

similar to that described in Sec. 2.3.3 each month. By monitoring interactive usage of our



44

own platform and other computation tools, we estimate that realistic usage falls closer to

the lower limits we provide; few users will use the platform continuously in an interactive

manner, and even fewer will be frequently executing large queries using Spark.

2.4.5 Dynamic Scaling

Recent versions of Apache Spark provide support for “dynamic allocation” of Spark execu-

tors for a Spark cluster on Kubernetes.29 Dynamic allocation allows for the Spark cluster

to scale up its size to accommodate long-running queries as well as scale down its size when

no queries are running. Figure 2.7 shows pictorially this scaling process for a long-running

query started by a user. This feature is expected to reduce costs associated with running

Spark queries since Spark executors are added and removed based on query status, not

cluster creation. This means the virtual machines hosting the Spark executor processes will

be free more often either to host the Spark executors for another user’s query or be removed

from the Kubernetes cluster completely.

2.4.6 User Experience

While the experience of using the science platform is largely identical to using a local or

remotely-hosted Jupyter notebook server, the use of containerized Jupyter notebook servers

on a scalable compute resource introduces a few notable points of di↵erence. First, similarly

to using a remotely-hosted Jupyter notebook, the filesystem exposed to the user has no direct

connection to their personal computer, an experience that can be unintuitive to the user.

File uploads and download can be facilitated through the Jupyter interface, but the process

remains clunky. For streamlined file transfer, the user must fall back to using an SSH client

and utilities like scp or rsync. In future deployments of this system, it is likely that new

user interfaces will need to be produced to maximize usability of the filesystem.

Additionally, in order to allow for scale-down of the cluster, notebook servers are typi-

cally shut down after a configurable period of inactivity using the jupyterhub-idle-culler

29Since Spark version 3.0.0 by utilizing shu✏e file tracking on executors as an alternative to an external
shu✏e file service, which is awaiting support in Kubernetes. See: https://spark.apache.org/docs/3.0.
0/configuration.html#dynamic-allocation

https://spark.apache.org/docs/3.0.0/configuration.html#dynamic-allocation
https://spark.apache.org/docs/3.0.0/configuration.html#dynamic-allocation


45

Figure 2.7: A screenshot of the job timeline from the Spark UI when dynamic allocation

is enabled. A long-running query is started, executing with a small number of executors.

As the query continues, Spark adds exponentially more executors to the cluster at a user-

specified interval until the query completes or the max number of executors is reached. Once

the query completes (or is terminated, as shown here), the Spark executors are removed

from the cluster.



46

service. A period of ⇠ 1� 8 hours is typical for deployments of this science platform. This

has the positive e↵ect of reducing costs but at a detriment to the user experience. At the

time of writing, inactivity is determined in terms of browser connectivity, so a user cannot

expect to leave code running longer than the cull period e.g. overnight. Juric et al. (2021)

have implemented functionality to checkpoint the memory contents of the notebook server

to disk before stopping with the ability to restore the server to a running state at will. Such

checkpoint/restore functionality solves the issue of interrupting running code when culling

servers; however, this still does not allow for codes to run longer than the cull period. At the

time of writing, additional functionality is being added to the jupyterhub-idle-culler

service to allow for fine-grained control over which servers are culled and when.

Finally, the underlying scalable architecture introduces server start-up latencies that

are noticeable to the user. Virtual machines that host notebook servers and Spark cluster

executors are requested from AWS on-demand by the user. The process of requesting new

virtual machines from AWS, downloading relevant Docker images to that machine, and

starting the notebook/Spark Docker container can take up to ⇠5 minutes.30 The user

can encounter this latency when logging onto the platform and requesting a server. They

also encounter this latency when creating a distributed Spark cluster, as many machines

are provisioned on-demand to run Spark executors. The log-in latency can be mitigated by

keeping a small number of virtual machines in reserve so that an incoming user can instantly

be assigned to a node. The zero-to-jupyterhub Helm chart implements this functionality

through its user-placeholder option. This functionality schedules placeholder servers on

the Kubernetes cluster that will be immediately evicted and replaced when a real user

requests a server. Additionally, to avoid Docker image download times, relevant Docker

images can be cached inside a custom-built virtual machine image (in AWS lingo, the

Amazon Machine Image or AMI) that the virtual machine is started from. An alternative

solution to this would be to place all incoming users on a shared machine, an equivalent to a

“log-in node”, before moving them to a larger machine at the user’s request or automatically

once a new server is provisioned from the cloud provider – a process known as live migration.

30This time is dependent on the individual cloud provider. DigitalOcean, another cloud provider, can
provision virtual machines in ⇠1.5 minutes based on the experience of the authors.



47

Juric et al. (2021) provides a path towards live migration of containerized Jupyter notebook

servers, but this advanced functionality remains to be implemented with a JupyterHub

deployment on Kubernetes.

2.5 Conclusions

We’ve described an architecture of a Cloud-based science platform as well as an implemen-

tation on Amazon Web Services that has been tested with data from the Zwicky Transient

Facility. The system is shown to scale to and allow parallel analysis with O(10TB) sized

tabular, time-series heavy, datasets. It has enabled a science project that utilizes a 1 bil-

lion+ ZTF light curve catalog in full, while requiring minimal e↵ort from domain scientists

to scale their analysis from a single light curve to the full catalog. The system demonstrates

the utility of elastic computing, the I/O capacity of the cloud, and distributed computing

tools like Spark and AXS.

This work should be viewed in the context of exploring the feasibility of making more

astronomical datasets available on cloud platforms, and providing services and platforms –

such as the one described here – to combine and analyze them. Using this platform, it is

both feasible and practical to perform large-scale cross-catalog analyses using any catalog

uploaded to AWS S3 in the AXS-compatible format.31 This enables any catalog provider –

whether large or small – to make their data available to the broad community via a simple

upload. Additionally, other organizations can stand up their own services on the Cloud –

either use-case specific services or broad platforms such as this-one – to access the data

using the same S3 storage API.

In this regime, the roles of data archive and data user can be further di↵erentiated,

to the benefit of the user and perhaps at reduced cost. Data archivers upload their data

to the cloud and bear the cost of storage. These costs are manageable, even by small

organizations; storing 1 TB of data in S3 costs ⇠$25 per month. Cost scales dramatically

when considering datasets at the PB level and timescales extending over years: a 1 PB

31For additional practicality, catalogs must also be uploaded to the same AWS region due to constraints
on data transfer costs between AWS data centers. However, given the advent of cloud storage solutions
such as Cloudflare R2 with zero data transfer costs, it seems plausible that this practicality constraint
may soon be lifted.



48

dataset will cost ⇠$3, 000, 000 over 10 years assuming storage costs do not decrease. At

these scales special pricing contracts may have to be negotiated between the cloud provider

and archive. Additional cost scales with the number of requests for this data and the

amount of data transferred. So-called “requester-pays” pricing models, supported by some

cloud providers, can o✏oad access and data transfer costs to the user. A user – or perhaps

an organization of users – can deploy a system like ours at reasonable cost to access the

data in a given cloud. In this case, the cost of analysis decouples from the cost of storage:

it is the user who controls the number of cores utilized for the analysis, and any additional

ephemeral storage used for the analysis. It is easy to imagine the user – as a part of their

grant – being awarded cloud credits for their research, which could be applied towards these

costs (Norman et al., 2021). Finally, an intermediary role may appear: the science platform

provider, which has an incentive towards continuous improvements of science platforms and

associated tools, which are now best viewed as systems utilized by astronomers to enable

the exploration of a multitude of datasets available. The incentive of a science platform

provider is to maximize science capability while minimizing the cost to the user, who now

has the ability to “shop around” with their cloud credits for a system most responsive to

their needs.



49

Chapter 3

A LARGE IMAGE PROCESSING CAMPAIGN FOR DISCOVERY OF
TRANS-NEPTUNIAN OBJECTS

3.1 Introduction

The history of the solar system, its formation and evolution, is encoded in the dynamical

structure and composition of its population of major and minor planets (DeMeo & Carry,

2014; Bottke et al., 2005). The major planets are hypothesized to have undergone significant

migration during early times in the solar system’s history, sculpting the existing structure

of the minor planets (Morbidelli et al., 2010; Morbidelli, 2010). The population of Trans-

Neptunian Objects (TNOs) has remained relatively pristine over the age of the solar system,

meaning their present-day structure has likely been in place since the formation of the solar

system. (Holman & Wisdom, 1993). The dynamics and compositions of TNOs therefore

hold clues about the history of solar system formation (Fernández & Ip, 1984; Malhotra,

1993; Duncan et al., 1995; Hahn & Malhotra, 2005; Tsiganis et al., 2005; Levison et al.,

2008; Nesvorný & Vokrouhlický, 2016).

These studies are currently limited by the number of known TNOs and the ability to

detect new ones. At visible wavelength, TNOs are detected in reflected light from the

Sun, resulting in an inverse fourth-power scaling of their flux with distance. This makes

them extremely challenging to detect. Studies of this population have been limited to its

largest bodies, and e↵orts to find smaller, fainter TNOs are often limited to “pencil-beam”

surveys which utilize large aperture, small field-of-view telescopes such as the Hubble Space

Telescope (Bernstein et al., 2004a). In the past two decades, the availability of large-

aperture, wide-field of view telescopes paired with high quality CCD imagers have enabled

surveys that are currently pushing the boundaries of TNO discovery by inventorying the

outer solar system (Trujillo et al., 2001; Millis et al., 2002; Jones et al., 2006; Schwamb

et al., 2010; Bannister et al., 2016). The Legacy Survey of Space and Time (LSST; Ivezić



50

et al. (2019)) promises to significantly extend this inventory of the outer solar system with

its 10-year survey of the entire southern sky. The single visit depth achieved (magnitude

23.5 in the r-band) combined with the wide field observed promises to observe and constrain

the orbits of ⇡ 40, 000 TNOs, increasing the number of known TNOs by a factor of ⇡ 10⇥

(LSST Science Collaboration et al., 2009; Kurlander et al., 2024).

The DECam Ecliptic Exploration Project (DEEP; Trilling et al. (2024)) is one of these

surveys, utilizing the 3 square degree DECam CCD imager on the 4-meter Blanco telescope

at the Cerro Tololo Inter-American Observatory (CTIO). It is an ambitious project with

an aim to provide high quality multi-year orbits of 5000+ TNOs as faint as magnitude 27

in the VR-band. We provide a brief summary of this survey in 3.2; however, a series of

papers from this collaboration provides a more detailed summary of its goals (Trilling et al.,

2024), observation strategy (Trujillo et al., 2024), survey characterization (Bernardinelli

et al., 2024), and initial results (Strauss et al., 2024a; Napier et al., 2024; Smotherman

et al., 2024; Strauss et al., 2024b).

This survey utilizes synthetic tracking in post-processing to discover moving objects

fainter than the single exposure limiting magnitude (Bernstein et al., 2004a; Shao et al.,

2014a; Heinze et al., 2015a; Whidden et al., 2019). The ideal input to synthetic tracking

algorithm are di↵erence images, the result of subtracting a template of the sky from cali-

brated survey images (Alard & Lupton, 1998; Becker, 2015). The template itself is typically

constructed through coaddition of calibrated images (Zackay & Ofek, 2017). Tools and

algorithms are then required for coaddition and image subtraction, in addition to a system

to apply these tools to the set of survey images and a data management system to handle

their outputs. The LSST Science Pipelines (LSP; Bosch et al. (2018, 2019)) provides these

algorithms and the ability to apply them to DECam images through robust and scalable

data management and task execution systems (Jenness et al., 2022). E↵ectively applying

the LSP in a data processing campaign requires an additional set of “campaign manage-

ment” tools which automate and track the execution of steps of one or more data processing

pipelines. We use the LSP for the processing of the DEEP survey images. In section 3.3,

we provide an overview of the LSST Science Pipelines and introduce a custom-made and

light-weight tool used for campaign management.



51

Constructing di↵erence images requires a template of the sky, the construction of which is

non-trivial. The quality of the template impacts the quality of resulting di↵erence images. A

poor quality template is an ine↵ective model of the sky, leading to di↵erence image artifacts

from poorly subtracted sources. A shallow template constructed from a small number of

input exposures can also introduce noise in the di↵erence image that overwhelms signal

from faint objects. These two e↵ects can dramatically impact the e↵ectiveness of moving

object discovery algorithms applied to the di↵erence images, especially when recovering

faint objects. An additional e↵ect is introduced when constructing templates from survey

images: the self-subtraction e↵ect, where flux from a moving object enters the template

and is thus subtracted in di↵erence images. The template strategy for DEEP involves

constructing templates from the survey images, thus requiring e↵ort either to mitigate the

self-subtraction e↵ect or model it in the shift-and-stack procedure or analysis of shift-and-

stack candidate discoveries, as performed in Smotherman et al. (2024). In section 3.4, we

describe a set of experiments performed to construct an optimal template from the survey

images available.

A large-scale data processing campaign was executed on the DEEP survey images using

our optimized template strategy. We summarize the results of this campaign, including

properties of the templates constructed and measurements of the computational resources

utilized in 3.5.

3.2 Survey Overview

The DEEP survey is a 64-night survey of 4 regions of the sky around the invariable plane.

The survey is split by time of year into two semesters A and B. For each semester, two

regions of the sky are observed: the A0, A1, B0, and B1 fields. These regions are further

sub-divided into individual pointings that tile the observed fields. Pointings are observed

in a fan-out pattern that tracks the expected motion of TNOs, with the intention of linking

TNO discoveries night to night and year to year of the survey. The sky coordinates of the

individual pointings are varied year to year to track the mean motion of the population of

TNOs expected to be observed. Figure 3.1 visualizes the observing pattern of the A0, A1,

B0, and B1 fields, while Figure 3.2 visualizes the individual pointings from the survey for



52

Figure 3.1: The sky-locations of the A0 (blue), A1 (orange), B0 (green), and B1 (red) DEEP

fields. Circles represent an approximation of the DECam 3 deg2 field-of-view. The gray line

represents the location of the ecliptic plane on the sky.

each of these fields.

Over the duration of the survey, each of the pointings are observed at least once in a 2-4

hour long-stare pattern; taking 50-100 120-second VR-band images with DECam. The long-

stare pointings are used to discover TNOs via digital tracking. Pointings are periodically re-

observed in sequences of 5-10 120-second VR-band exposures. A few pointings are observed

in bands other than VR to allow for color determination of discovered objects.

3.3 Image Processing with the LSST Science Pipelines

Herein we describe the tools and methods used to construct di↵erence images from the DEEP

survey images. Section 3.3.1 provides an overview of the LSST Science Pipelines, which

were the main tool used for image reduction and di↵erence image construction. Section

3.3.2 provides details on a campaign management system used to drive the data processing

campaign with the LSP.



53

Figure 3.2: The individual pointings of the A0 (blue), A1 (orange), B0 (green), and B1

(red) DEEP fields. Circles represent an approximation of the DECam 3 deg2 field-of-view.

3.3.1 Overview of the LSST Science Pipelines

The LSST Science Pipelines (LSP) are a sophisticated suite of tools for processing astronom-

ical image data in a scalable, robust, and reproducible manner. The pipelines will be used to

process the survey images from the LSST into survey data products produced by the nightly

Alert Production (AP) pipelines, Prompt Processing pipelines, and the yearly Data Release

Production (DRP) pipelines. Survey data volumes will easily exceed a petabyte, dwarfing

the output from prior surveys. The LSP have been used successfully to process DECam

images in Smotherman et al. (2021), Smotherman et al. (2024), Danieli et al. (2024), and

Fraser et al. (2024) among others.

The LSP consists of core algorithms, written in Python and C++, that perform tradi-

tional data reduction routines, as well as a rich set of middleware that enables the operation

of these algorithms on input images and catalogs. The algorithms are wrapped in config-

urable tasks implemented as Python classes. Tasks declare their input and output datasets

using dataset types, which is a name paired with a set of dataset dimensions. Dimensions

are properties of datasets that can be used to uniquely identify them. Example dimensions

are the instrument from which a image was produced, for example DECam, the detector

number in the instrument that the image comes from, or the photometric band that the

image was taken in. Sequences of tasks can be chained together into a task graph by their

input/output dependencies, matching declared input/output dataset types. In LSP par-



54

isr
lsst.ip.isr.isrTask.IsrTask

dimensions: {detector, exposure}

postISRCCD
dimensions: {detector, exposure}

storage class: Exposure

camera
dimensions: {instrument}

storage class: Camera

linearizer
dimensions: {detector}

storage class: Linearizer

crosstalk
dimensions: {detector}

storage class: CrosstalkCalib

defects
dimensions: {detector}

storage class: Defects

bias
dimensions: {detector}

storage class: ExposureF

characterizeImage
lsst.pipe.tasks.characterizeImage.CharacterizeImageTask

dimensions: {detector, visit}

icExpBackground
dimensions: {detector, visit}

storage class: Background

icSrc
dimensions: {detector, visit}

storage class: SourceCatalog

icExp
dimensions: {detector, visit}

storage class: ExposureF

calibrate
lsst.pipe.tasks.calibrate.CalibrateTask

dimensions: {detector, visit}

calexpBackground
dimensions: {detector, visit}

storage class: Background

calexp
dimensions: {detector, visit}

storage class: ExposureF

src
dimensions: {detector, visit}

storage class: SourceCatalog

srcMatchFull
srcMatch
dimensions: {detector, visit}

storage class: Catalog

raw
overscanRaw
dimensions: {detector, exposure}

storage class: Exposure

fringe
flat
dimensions: {detector, physical_filter}

storage class: ExposureF

ps1_pv3_3pi_20170110
gaia_dr3_20230707
dimensions: {htm7}

storage class: SimpleCatalog

Figure 3.3: A visualization of an example pipeline. Datasets are represented as gray boxes

while tasks are represented as cyan boxes. Arrows indicate the input/output relationship

between datasets and tasks. Dashed lines represent “prerequisite“ dataset inputs which

must exist prior to pipeline execution. This pipeline represents the execution of tasks that

will instrument correct, characterize, and calibrate a raw image.

lance, this task graph is called the quantum graph where individual nodes in the graph,

called quanta, contain information about a task, its configuration, and its inputs/outputs.

Pipelines are formed by declaring tasks, the names of their inputs and outputs, and their

configurations in YAML files. An example pipeline is visualized in Fig. 3.3. The LSP

distributes pipelines for operation of AP, DRP, and Calibration Products (CP) produc-

tion on images from DECam as well as other instruments such as Hyper-Suprime Camera

(HSC), and the LSST Camera and Commissioning Camera. The CP pipeline provides tasks

for constructing calibration data products while the DRP pipeline provides tasks for single-

frame calibration, coaddition, and image subtraction, providing a full pipeline for producing

DECam di↵erence images.



55

To build a realization of a quantum graph, the quantum graph builder queries the Butler

to determine which data inputs exist and which data outputs need to be produced. The

Butler is the main mechanism through which data is accessed by the LSP and the end user.

The Butler stores datasets in the Datastore, which is an abstraction layer over a traditional

file system or object store, and stores metadata about the datasets in the Registry, a set

of tables in a database. The Registry contains information about which datasets exist

in the Datastore, their dataset types, and their dimensions. Datasets are also associated

with dimensions that enable temporal and spatial queries of datasets. The Datastore and

Registry are joined together in the so-called Butler “repository”.

Once a quantum graph is built, it can be submitted for execution to an execution

provider. The execution provider executes the tasks contained in the quantum graph and

produces their outputs. The execution provider is abstracted through the LSP Batch Pro-

cessing System (BPS), which translates the quantum graph execution to one of several

supported workflow management systems such as HTCondor, Pegasus, Panda, and Parsl

(Thain et al., 2005; Deelman et al., 2019; Maeno et al., 2024; Babuji et al., 2019).

Individual datasets are contained in “collections” in the Registry, which comes in several

types. RUN collections contain the outputs from any executed quantum graph or ingestion

of raw images into the Butler. Datasets are required to exist in a RUN collection since the

collection identifier provides an extra tag to a dataset that disambiguates it from others

of the same dataset type. TAGGED collections contain datasets from one or more RUN

collection that were manually associated into the TAGGED collection. CALIBRATION

collections contain specially tagged calibration datasets. CHAINED collections are linked

lists of RUN, TAGGED, CALIBRATION, and other CHAINED collections.

3.3.2 Automated end-to-end processing of DECam images

We developed a light-weight campaign management tool to support automated processing of

DECam images using the LSST Science Pipelines with minimal intervention. This campaign

management tool intends to bring a set of survey images from their raw form into a processed

form, be they calibrated exposures or di↵erence images. The campaign management tool



56

solves several problems faced when executing a large data processing campaign on DECam

images. The first of these issues is the mirroring of the metadata and image data available

in the NOIRLab archive for survey images. The second of these issues is long quantum

graph generation time when operating the pipelines with a large number of inputs. The

quantum graph generation time typically scales linearly with the number of inputs due to

its reliance on individual database queries for resolving the data dependencies in the task

graph. The third is the desire to recover from transient failures during pipeline execution.

These failures may not be due to a failure in the task itself, but rather may be from

transient environment factors, say due to a machine running out of memory, disk space,

or is preempted/interrupted during task execution. The fourth is a method to handle

provenance when executing multiple steps of a processing pipeline, tracking and making

readily apparent the status and historical record of processing. Finally, a method is required

to execute pipeline processing in a semi-autonomous way.

NOIRLab archive mirroring is achieved through a small script that queries the archive

for the available raw exposures under a provided proposal ID. From this information, the

observing nights are collated and used to query for available nightly bias and flat images.

Nights for which no calibrations are available are collected and provided to the pipeline

operator. The metadata for the raw and calibration images are stored in a local exposure

database, represented as an Enhanced Character Separated Values (ECSV) file.12 A utility

is provided to query from the local exposure database and download subsets of the exposure

database to a chosen location, represented as a flat directory of compressed FITS files. The

utility uses the NOIRLab REST API to download images over HTTP. The utility checks the

md5 hash of the downloaded file and compares it to the md5 hash reported from NOIRLab.

If the hashes do not match, a query is made to the NOIRLab REST API to perform an

integrity check on the file in the archive. The integrity of the file on disk, the integrity of

the file in the archive, and whether the file has been downloaded are stored in a separate

database, also represented as an ECSV file. This utility provides a method to stage DECam

1For processing at larger scale, a table in a database operated by a database management system such
as SQLite or Postgres would be more appropriate.

2The ECSV format was introduced and specified in Astropy Proposal for Enhancement (APE) 6.



57

images and their metadata locally and filter out any images with integrity issues before

ingestion into a Butler repository.3

Long quantum graph generation time is solved by processing survey data in smaller

subsets. Processing the data via subsets also enables parallel execution of quantum graph

generation and workflow submissions, resulting in a higher throughput of workflows and bet-

ter utilization of the computing resources available for a data processing campaign. Subsets

are derived by partitioning or sharding on a dimension of the input data. Telescope surveys,

and their respective data reduction e↵orts, are already naturally partitioned temporally by

observing night, where survey images are taken one night at a time and are often pro-

cessed using calibrations that are constructed on a nightly basis. In LSP parlance, this

corresponds to selecting on the day obs dimension and its associated groups of exposures.

Unfortunately, before version w 2024 10 of the LSP, the day obs dimension did not corre-

spond to the observing night for DECam, so the observing night information collated in the

previously described local exposure database is used as the partitioning value to group raw

calibration and science images by their exposure number. When performing co-addition, or

when operating other tasks that aggregate over on-sky regions, a spatial partitioning scheme

is required. Spatial dimensions are provided through the patch dimension associated with

a “skymap”. Patches can be grouped arbitrarily into subsets of a desired size; however for

co-addition, it is convenient to group patches with similar numbers of warp inputs together

so that they can be executed under the same workflow as they are likely to share the same

memory requirements during execution.4

Our campaign management system recovers from transient failures by operating in a

loop 1) building and submitting the quantum graph for execution, and 2) marking failed

tasks that meet certain criteria for retry at the end of execution. The loop terminates when

all tasks have either executed successfully, or have failed in a way that the pipeline operator

3Data integrity issues in the NOIRLab archive have made it typical instead of rare for a downloaded
survey image to be partially corrupted. While these data are sometimes still usable, we exclude them
from consideration.

4This same grouping e↵ect based on resource usage can likely be achieved through clustering of the quan-
tum graph, an operation that occurs during workflow submission; however, the authors remained ignorant
of how to e↵ectively use this feature during design and operation of our processing campaign. Additionally,
not all execution providers support resource requests assigned through LSP supported methods.



58

does not wish to recover from. When building the quantum graph, we use the behavior of

the quantum graph builder to skip quanta for which a dataset is already available, noted

by the presence of task metadata for that quantum in the Butler registry. We additionally

have modified the default quantum graph builder to skip quanta that have previously failed,

noted by the presence of a task log in the Butler registry while the task metadata is missing.

Tasks are marked for retry by searching through the available task log file for matches to a

set of pre-defined regular expressions that indicate a failure is transient.5 Logs that match

one of the predefined patterns are moved from their original {task name} log dataset type

name into a new dataset type called {task name} log retry. This method is not ideal,

as the set of regular expressions is not known beforehand, and must be discovered by

encountering them, introducing human labor into the operations of the pipelines. Pattern

matching against log files is also in-flexible to changes in the logging messages of the tasks

themselves. However, the list of patterns can be kept small and be made generic enough to

be e↵ective at catching most instances where a task should be retried.

Processing provenance is handled by using the RUN, CHAINED, and TAGGED col-

lections available in the Butler registry. RUN collections contain datasets that are the

direct result of pipeline processing. TAGGED collections contain datasets that are from

one or more RUN collection, joined via manual association. CHAINED collections repre-

sent groups of RUN, CHAINED, and TAGGED collections and provide an entry-point to

all datasets relevant to a single processing e↵ort. We developed a method of naming the col-

lections that provides a convenient hierarchy for automatic organization of RUN collections

into a parent CHAINED collection. RUN collections are named according to the template

{campaign}/{subset}/{proc type}/{pipeline name}/{pipeline step}/{datetime} where

campaign is a name for the data processing campaign, subset is the processing subset,

proc type is the processing type (one of bias, flat, drp, coadd, diff drp), pipeline name

is the name of the YAML file that contains the pipeline configurations, pipeline step is

a selector of a single pipeline task or step in the pipeline YAML, and datetime is the ISO

8601 formatted datetime string representing when pipeline processing was initiated. For ex-

5Examples include MemoryError and std::bad alloc which both indicate issues with the amount of
memory available during task execution.



59

ample, DEEP/20190401/bias/cpBias/cpBiasIsr/20240102T030405Z would be the name

assigned to the RUN collection that contains datasets from execution of the cpBiasIsr

step of the cpBias pipeline to create bias calibrations for night 20190401 for the DEEP data

processing campaign. RUN collections are grouped under parent CHAINED collections

with name {campaign}/{subset}/{proc type}, and the proc type is used to determine

pre-defined input collections that are also grouped under the parent. For example, the par-

ent collection DEEP/20190401/bias is constructed by appending all of the RUN collections

with names that match the glob pattern DEEP/20190401/bias/*, sorted by their datetime

timestamp as well as appending the pre-defined input collection DECam/calib which con-

tains pre-curated calibration datasets for DECam image processing. Processed nightly cal-

ibrations are certified and placed into CALIBRATION collections that follow the naming

pattern {campaign}/{subset}/calib/{proc type} e.g. DEEP/20190401/calib/bias and

DEEP/20190401/calib/flat. The {subset} value can be further subdivided into finer

grained subsets or to distinguish subsets processed with di↵erent configuration values of

the pipelines. For example, the subset may be 20190401 when constructing a template for

a single night using the default pipeline configuration, 20190401/median to indicate that

the pipeline configuration was altered to use the median statistic, or 20190401/group 0

to operate processing on a subdivision of the 20190401 subset. Figure 3.4 provides a vi-

sual summary of the collection structure at the end of an example processing campaign.

This simple structure for collection naming provides a summary of the status of pipeline

processing just by listing the available collections in the Butler registry. The hierarchical

structure also provides a convenient method to select RUN or CHAINED collections that

contain datasets of interest. This is a crude but e↵ective method for storage of metadata

about collection contents and processing provenance.6

Semi-autonomous processing is enabled by encoding the previously outlined processing

logic in discrete executable programs which can be chained together to process the full

survey. When chained together, the programs can be expressed as a task graph that can be

6A more e↵ective and scalable solution would involve creating a separate database that tags arbitrary
collection names with user-defined metadata. Queries against this database would provide the information
about the collections that contain datasets of interest.



60

Figure 3.4: Collections for bias, flat, drp, coadd, and di↵ drp as printed from Butler query-

collections. For brevity, the values {i}, {datetime}, and {group} are placeholders in

collection names that follow the same pattern.

executed by a workflow management system. The discrete programs are:

1. Chain: Constructs a parent collection for a subset and proc type from a pre-defined

set of input collections and RUN collections that share the parent collection root.

2. Associate: Associates datasets from one or more input collection into an output

TAGGED collection.

3. Ingest: Search the local image cache for images which match search constraints e.g.

on image type (zero, dome flat, or object), on observing night, or band. Ingest images

which are downloaded and have passed integrity checks into the Butler repository

using the IngestRawsTask Python API.

4. Retry: Take as input a RUN collection. Search for all datasets matching the pattern

* log to find logs for executed tasks. Identify logs that match pre-defined patterns

indicating a retry. If a task is marked for retry, move the * log dataset into one with

the name * log retry.



61

5. Execute: Executes a single task or step in a pipeline on a parent chained collection to

completion. Constructs a name for a new run collection in the specified format. Gen-

erates a quantum graph using the parent chained collection as input and outputting

datasets into the new run collection. Skips quanta for which a metadata entry exists,

indicating that the dataset was previously produced. Skips datasets for which a log

exists, indicating a previous failure. Submits the resulting quantum graph to a work-

flow management system using the LSP Batch Processing System. Call Retry on the

resulting RUN collection. Append the RUN to its parent by calling Chain. Repeats

operation on the parent chained collection until the quantum graph has no tasks to

be executed.

6. Pipeline: Given a proc type, one or more subset, and a sequence of tasks or steps,

Execute the sequence of steps on the parent collection defined by the subset and

proc type.

7. Night: Enumerates over nights in the survey taken from the local exposure database

and matching a user provided pattern. For each night, enumerate over proc type bias,

flat, and drp. For each proc type (and in that order), Ingest raw image frames from

the local cache into the Butler repository, Associate raw images into a TAGGED

collection, call Chain to construct a parent collection for processing, define visits from

the input raw files, execute Pipeline using a pre-defined sequence of steps for the

proc type, automatically certify calibrations if needed.

8. Coadd Subsets: Defines subsets for co-addition. Find warps in a set of input collec-

tion. Reduce the (tract, patch, band, visit) dimension values of the input warps on

the visit dimension to count the number of input warps associated with each (tract,

patch, band) tuple. Group (tract, patch, band) tuples into clusters with similar values

of the number of input warps and up to a maximum threshold in the total number

of input warps contained in the group. Associate each group of warps into its own

TAGGED collection, constructing a group subset identifier and appending it to the

provided coadd subset. Define a parent collection for each group in the coadd subset.



62

9. Coadd: Enumerate over groups defined for a coadd subset. Call Pipeline to execute

coaddition tasks on the group. Associate coadd outputs from coadd subset groups

into a TAGGED collection using the coadd subset name.

10. Diff: Take as input a coadd subset and enumerate over nights in the survey. For each

night, construct a parent collection with the proc type set to di↵ drp and specifying

the coadd subset to append the correct TAGGED collection containing coadd outputs

to use as a template. Call Pipeline to execute di↵erence imaging tasks on the parent

collection.

In our implementation, these discrete programs are implemented as Python scripts, and

we use Parsl to represent and execute a task graph constructed through invocations of the

Python programs in a Bash shell. Example command-line invocations of these programs

might look like

$ night 20190401

to ingest data, construct calibrations, and perform single-night processing on science images

from observing night 2019-04-01 of the survey. And processing the whole survey in this way

looks like

$ night .*

where .* is a regular expression that selects all observing nights available in the local

exposure database.

3.4 Optimizing Sky Templates for Slow Moving Object Recovery

Templates of the regions of sky observed are constructed through coaddition of the survey

science images. These templates are then subtracted from the same science images to

construct di↵erence images, which should only contain signal from transient sources such

as moving objects. Templates are constructed at the pixel level by attempting to model a

distribution of flux values from the input images. A summary statistic such as the mean is

typically used to model this distribution. A transient source in the science image will be

an outlier in this distribution and should ideally deviate from the chosen summary statistic

value. Moving objects are only transient if they move enough between the epochs of the



63

Figure 3.5: An example bright and faint synthetic TNO as it appears in a science image, a

co-added template, and a di↵erence image.

science images so as not to bias the input flux distribution for the template. Objects that

move slow enough will instead heavily contaminate the input flux distribution and will be

fully or partially modeled by the template. In the di↵erence image, flux from the moving

object will be lost as it will have been subtracted out–producing the so-called self-subtraction

e↵ect. This presents a challenge when attempting to discover slow moving objects, such as

Trans-Neptunian Objects, in di↵erence images. Figure 3.5 illustrates this e↵ect for a bright

synthetic TNO in the DEEP survey.

A more optimal template can be constructing either by modeling the flux distribution

di↵erently or modifying the distribution so that modeling it is easier. The flux distribution

can be modeled di↵erently by changing the summary statistic used. In practice, the mean is

a poor summary statistic that is easily biased in the presence of outliers. Typical remedies

are to use the median or the sigma-clipped mean as an estimate of the center of the input

flux distribution. The input distribution can be modified by including observations that

do not include the moving object at all to boost the contribution of the static sky to the



64

flux distribution. This can be challenging or impractical to achieve as it requires modifying

the survey observing strategy and sacrificing observing time to re-visit previously observed

fields on a di↵erent night. A typical pattern of template construction will also sub-sample

the input images to select those with the best seeing. This constructs a template which has

a narrower PSF than the majority of the science images, which has the e↵ect of improving

the quality of the resulting di↵erence images. Sub-sampling the input images also has

the result of making the template shallower, which can increase the noise present in the

di↵erence images and increase the chance and number of false positive detections when

performing a shift-and-stack search on the images.

We performed a set of injection-recovery tests to observe the e↵ect of template construc-

tion strategy on the discovery of TNOs using the DEEP data. Our experiment consists of

injecting a dense set of synthetic TNOs into the DEEP survey images, constructing a variety

of templates using di↵erent summary statistics, constructing di↵erence images using those

templates, and then applying a shift-and-stack code to recover the synthetic objects in the

di↵erence images. A fiducial optimal template is also constructed by using input images

without synthetic objects injected into them. The e↵ectiveness of the template strategy is

evaluated by modeling the completeness of the shift-and-stack search. We use the three

parameter completeness model from Bernardinelli et al. (2024)

p(m|c, k,m50) =
c

1 + exp (k(m�m50))
(3.1)

where m50 is the magnitude at 50% completeness, c is the fraction of objects detected

when m ⌧ m50, and k is a steepness parameter that encodes how rapid the drop-o↵ in

completeness is at m50. The parameter values are estimated by maximizing the likelihood

L =
Y

i2D
p(mi|c, k,m50)

Y

i2Dc

1� p(mi|c, k,m50)

where D are the set of synthetic objects recovered, Dc is the set of synthetic objects not

recovered, and mi is the magnitude associated with a single synthetic object.

Image processing, template construction, and di↵erence imaging requires substantial

computational resources. To keep the computational cost down, we performed our experi-

ment on a small subset of the DEEP survey. We used the tools described in 3.3.2 to process



65

5 detectors from the 2021-09-04 pointing of the B1e DEEP field. We chose detectors 1, 11,

27, 49, and 56 arbitrarily but with a spread across the DECam focal plane. This pointing

contains 98 VR-band exposures which each have exposure times of 120 seconds. A popu-

lation of synthetic objects was generated using the tools described in Bernardinelli et al.

(2024). The density of synthetic objects was increased so that there were approximately

200 objects per detector. Detectors from all observation epochs went through instrument

signature removal, nightly calibrations were applied, PSF model fitting, WCS fitting us-

ing the Gaia DR3 catalog, and photometric calibration using the PS1 catalog, converting

raw images into calibrated exposures. Synthetic objects were injected into the calibrated

exposures. The calibrated exposures both with and without the fakes were warped onto a

common pixel grid using an identical skymap.

Two modes of epoch selection were applied: one which retained one third of the epochs

where the seeing was the best and another which included all epochs. Three summary

statistics were used for coaddition: the mean, the sigma-clipped mean, and the median. The

sigma clipped mean performs iterative clipping to remove signal that is 5 or more standard

deviations from the estimated mean of the input flux distribution. In all, 12 templates were

constructed by pairing the three statistics with the two epoch selection strategies and using

warped exposures that did and did not contain synthetic objects. Templates constructed

with warped exposures that do not contain synthetic objects represent an ideal template,

that which does not contain signal from objects we wish to recover. Di↵erence images were

produced by subtracting the templates from the calibrated exposures with the synthetic

objects.

We used the KBMOD (Whidden et al., 2019) software to apply shift-and-stack to the

di↵erence images. For each of the template strategies, we ran KBMOD on stacks of the

di↵erence images produced from the chosen template one detector at a time. The searches

performed covered velocity rates from 50 to 450 pixels per day and angles with respect to

the ecliptic of -45� to 45�. All candidates with a likelihood level of 7 or more were output

from KBMOD. Candidate trajectories include a starting location. A search candidate is

matched to a synthetic object if its trajectory starting location is within 2 arcseconds of

the location of a synthetic object. This partitions the synthetic objects into disjoint sets of



66

those that were found and not found. Using this information, we fit Eq. 4.10 to produce a

completeness curve corresponding to each template type.

Figure 3.6 visualizes the completeness fit for each experiment while Tab. 3.1 enumerates

the completeness fit parameters from these experiments. Each of the completeness curves

achieves similar m50 depth and completeness c, but there is large variation in the steepness

parameter k when comparing the completeness derived from the templates that contain

synthetic objects and those that do not. We multiply each of the completeness curves with

a proposed model of the luminosity function of TNOs, which translates completeness into a

model of detection probability of a real object as a function of magnitude. The luminosity

function we choose is a rolling power law, modeled and published by Napier et al. (2024)

p(m) = 100.89⇥(m�23)�0.07⇥(m�23)
2
.

Figure 3.7 visualizes the detection probabilities p(s|m)p(m) for the di↵erent template types.

This transformation of the completeness curve magnifies the di↵erence in completeness at

the faint end, where the number of objects is most numerous. What is observed is a strict

ordering in the e↵ectiveness of the template: the clipped mean is better than the median

which is better than the mean, and it is better to use all of the epochs than to perform a

selection on seeing. This strict ordering is observed again when considering the template

constructed without synthetic objects, which is the optimal template possible for reducing

the self-subtraction e↵ect.

We can compare template choices numerically by integrating the detection probability

to produce an un-normalized count of the number of objects detected:

N /

Z
dm p(m|s)p(s) .

The normalization factor would account for factors like the area of sky searched and the

size of the total population. However, we can ignore the normalization factor by comparing

the un-normalized count for each template experiment to a reference

frel = N/Nrel .

We choose as reference the processing choice in Smotherman et al. (2024), which was to



67

include all epochs and use the mean statistic. Relative numbers of detections for each of

the template choices are enumerated in Table 3.1.

We conclude from these experiments that when constructing templates from survey

images, and especially in the case that a single night of data is used to construct the

templates that are used to produce di↵erence images that drive discovery, it is more optimal

to use all of the epochs available than to perform any epoch selection. Additionally one

should rely on the clipped mean as the summary statistic used for the template as opposed to

the median or mean. Using the clipped mean is expected to boost the number of detections

by 1.31 relative to prior processing in Smotherman et al. (2024). It is more optimal still to

construct a template that does not contain the moving objects of interest, accomplished by

using out-of-survey images to construct the template or constructing a template for a single

night using survey images from di↵erent nights. These experiments suggest that this could

boost the number of moving objects found by a factor of 2.03.

3.5 Processing Campaign

We utilized the LSST Science Pipelines as well as the tools described in Sec. 3.3.2 to process

the DEEP survey images described in Sec. 3.2. The version of the pipelines used was

w 2024 30.

3.5.1 Pipeline Processing

For each night of the survey, we constructed master calibrations using the available zero

and dome flat calibrations from the NOIRLab archive for the observing nights of the survey.

The cpBias.yaml and cpFlat.yaml pipelines were used from the LST cp pipe (calibration

pipeline) package. Nights 2019-05-05, 2020-10-19, and 2022-05-25 of the survey were missing

raw flat calibrations in the NOIRLab archive, while night 2020-10-19 was missing raw bias

calibrations. For these nights, the prior or next night’s calibrations were used to calibrate

their respective science images. In these pipelines, raw bias frames are combined to form a

master bias calibration. Raw flat frames are then bias corrected, normalized, and combined

to construct a master flat calibration.



68

Figure 3.6: The completeness of a shift-and-stack search applied to di↵erence images made

using a variety of template construction methods. Colors represent a choice in the coaddition

statistic, while a di↵erence in the line styling represents a choice in which exposures were

included in the template. Fainter lines indicate that signal from the synthetic objects were

not included in the template, representing a “theoretical maximum” recovery e�ciency

achievable when the self-subtraction e↵ect is removed.



69

Selection Statistic Has Fakes c m50 k frel

psf MEAN withFakes 0.62± 0.05 24.78± 0.11 2.62± 0.37 0.92

all MEAN withFakes 0.63± 0.05 24.76± 0.13 2.35± 0.34 1.00

psf MEANCLIP withFakes 0.63± 0.05 24.84± 0.12 2.60± 0.38 1.03

psf MEDIAN withFakes 0.60± 0.04 24.92± 0.11 2.74± 0.40 1.06

all MEDIAN withFakes 0.63± 0.05 24.81± 0.14 2.33± 0.34 1.09

all MEANCLIP withFakes 0.60± 0.05 24.97± 0.14 2.27± 0.35 1.31

psf MEAN noFakes 0.69± 0.11 24.69± 0.32 1.39± 0.25 1.77

psf MEDIAN noFakes 0.66± 0.08 24.90± 0.25 1.52± 0.26 1.88

psf MEANCLIP noFakes 0.65± 0.08 24.91± 0.25 1.51± 0.26 1.90

all MEAN noFakes 0.73± 0.11 24.69± 0.31 1.35± 0.24 1.91

all MEDIAN noFakes 0.71± 0.10 24.76± 0.29 1.35± 0.23 2.00

all MEANCLIP noFakes 0.68± 0.10 24.83± 0.32 1.36± 0.26 2.03

Table 3.1: Completeness parameters for Eq. 4.10 for KBMOD searches on di↵erence images

constructed using di↵erent template types as well as the derived relative number of TNO

detections frel.



70

Figure 3.7: The probability of detecting a TNO at a given magnitude, found by multiplying

completeness with a luminosity function for TNOs. Colors represent a choice in the coad-

dition statistic, while a di↵erence in the line styling represents a choice in which exposures

were included in the template. Fainter lines indicate that signal from the synthetic objects

were not included in the template, representing a “theoretical maximum” recovery e�ciency

achievable when the self-subtraction e↵ect is removed.



71

Science images were processed using a modified version of DRP.yaml for DECam from the

LSP drp pipe (data release pipeline; link) package. At this stage, only minor modifications

are made to DRP tasks to accommodate the processing of VR-band images and to split tasks

into steps that share common data dimensions. Splitting the tasks this way ensures that a

single task failure at one stage does not propagate into cascading downstream failures. A

major modification is made in the form of the bad pixel masks applied to the DECam images.

It was discovered through this processing e↵ort that the default bad pixel masks applied

by the LSP are incorrectly interpreted versions of privately distributed bad pixel masks

produced from the Dark Energy Survey (DES; Morganson et al. (2018)) data processing

e↵orts. The existing pipelines incorrectly interpret the DES mask for suspicious pixels

(SUSPECT; not to be used in precision analysis) as bad, masking and interpolating over

scientifically valuable pixels, mostly at the edge of the detector. The mistake is most

apparent when applied to detector 57 (N26), in which a large region of the detector is

masked and interpolated over, shown in Figure 3.8. The bad pixel masks were replaced by a

new set of masks, ones which combine the published DECam community pipeline bad pixel

masks and the DES produced bad pixel masks that are distributed with the LSST Science

Pipelines. The SUSPECT mask from the DES bad pixel masks are extracted and applied

to input images in a new task called applySuspect that has been included in the modified

DRP. Figure 3.9 visualizes the result of merging the DECam community pipeline and DES

bad pixel masks over a small region of detector 57 (N26), which masks the pixel row the

produces the large SUSPECT region that was previously masked out.

For each night of the survey, the modified DRP pipeline was applied to the science

images, performing bad pixel masking, instrument signature removal, cosmic ray detec-

tion and repair, PSF fitting, background modeling and subtraction, WCS fitting via cross-

matching detected sources with Gaia DR3 (Gaia Collaboration et al., 2016b, 2023), pho-

tometric calibration via cross-matching with Pan-STARRS1 (Chambers et al., 2019), and

source detection. PSF and WCS models are used to inject a catalog of synthetic sources

into survey images after instrument signature removal. The process of background mod-

eling and subtraction, PSF fitting, WCS fitting, and source detection are applied again

to these images to produce calibrated images and source detection catalogs that include



72

Figure 3.8: The default and updated bad pixel mask for detector 57 (N26) as well as the

before/after calibrated exposure that results after application of these mask. When using

the updated bad pixel mask, a large region of the detector—in addition to a region at the

edge–is no longer masked and interpolated over. In the calibrated exposures, the contrast

is heightened to highlight the masked regions.



73

Figure 3.9: The di↵erences between and the result of merging the bad pixel masks produced

by the DECam community pipeline (CP) and Dark Energy Survey (DES). Binary opera-

tors “!”, “&”, and “|” stand for “not”, “and”, and “or”. Merging the masks produces a

conservative bad pixel mask that can be applied to the DECam images.



74

synthetic objects. Calibrated exposures with synthetic objects injected are aligned using

their WCS and warped onto a common pixel scale. Warped exposures are co-added us-

ing the CompareWarpAssembleCoaddTask, which compares both direct and PSF-matched

warps to exclude transient artifacts in the template, to construct a nightly template for

image subtraction. The template is subtracted from the processed science images us-

ing the SubtractImageTask based on the method of Alard-Lupton (Alard & Lupton,

1998). After all survey processing is done, all warped exposures are co-added using the

CompareWarpAssembleCoaddTask to construct a single survey template. The survey tem-

plate is subtracted from the science images using the SubtractImageTask. We terminate

the DRP processing at this point, excluding downstream tasks that perform detection on

the coadd, associate di↵erence image sources into di↵erence image objects, and perform

forced photometry on calibrated and di↵erence exposures for the coadd sources and dif-

ference image objects. These tasks were excluded as they were not critical for the science

goals of the DEEP collaboration and substantially increases the computational resources

necessary for pipeline execution.

3.5.2 Processing Errors

Errors were encountered when executing the pipeline tasks during this processing. Transient

errors due to node failures or memory errors were retried; however, failures determined to be

due to data quality issues or failures with unknown causes were not tracked down and fixed.

Detectors 2 (S30), 31 (S7), and 61 (N30) produce persistent errors in processing. Detector

2 (S30) is masked out during data reduction leading to a predicable failure, detector 31 (S7)

has one amplifier masked out, and detector 61 (N30) has unmasked data quality issues.

Example images for these three detectors are visualized in Fig. 3.10. These detectors can

be considered unreliable and should likely be excluded outright.

Among the other detectors, the most major failures occurred during PSF modeling, WCS

fitting, and photometric calibration with the most common failure mode being a paucity of

quality sources detected on the science images; these are images for which the weather was

bad. A shortlist of “bad weather” nights are enumerated in Table 3.2. These nights had



75

Figure 3.10: Images of calibrated exposures for detector 31 and 61 which have pervasive

issues during processing. Pixels are visualized in gray while colors indicate layers of values

in the exposure mask.



76

lost more than 3 of the 62 focal plane detectors on average during at least one stage of the

single-night processing through image characterization (the characterizeImage task; PSF

fitting) and image calibration (the calibrate task; background subtraction, WCS fitting,

and photometric calibration).

There were two failure modes observed when performing coaddition. In the first, a

mismatched number of non-empty direct and PSF-matched warps were provided as input

to the co-addition task. It is unclear how this could happen, but it occurred for a small

number of the coaddition tasks performed. This points to a likely bug in the LSST Science

Pipelines logic that should be fixed. This error was fixed by modifying the inputs to the

coaddition task to exclude all visits for which there was an empty warp written to disk.

This information is non-trivial to retrieve and involved parsing the log files for the failed

coaddition tasks to determine which warps were empty when loaded. A second failure

mode was observed where a convex polygon could not be constructed that bounds the input

warps.7 We hypothesized that this was due to errors in the WCS models of the input

detectors used for the warps. It was found that these tasks had input warps that included

detector 31, one of the detectors with processing issues and which would sometimes produce

WCS models that were inaccurate beyond the single unmasked amplifier. These errors

were fixed by modifying the inputs to this task to remove visits for which detector 31 was

included in the warp. In future processing, detectors 31 and 61 should be excluded from the

warping process to avoid these errors and to also avoid unmasked bad data from entering

the template.

In di↵erence imaging, the only failure mode observed was again related to matching of the

geometries of the di↵erence image and the template arising as a SinglePolygonException.

These errors were likely again due to bad WCS models, however we did not investigate these

errors further.

7The error reported was RuntimeError: Polygon is not convex



77

night icExp calexp

20190505 0.05 0.06

20190603 0.02 0.07

20201015 0.02 0.05

20210506 0.19 0.48

20210510 0.08 0.37

20210512 0.05 0.05

20210513 0.02 0.06

20210515 0.10 0.39

20210518 0.19 0.47

20210903 0.02 0.05

20210907 0.30 0.76

20210910 0.06 0.06

20220528 1.00 1.00

20220821 0.03 0.06

20220822 0.02 0.05

20220823 0.02 0.08

Table 3.2: The fraction of datasets produced of type postISRCCD, icExp, and calexp for

nights that have a relatively large number of processing errors, resulting in at least 3 detec-

tors per focal-plane being lost on average. Nights with more than 5 detectors per focal-plane

lost on average are highlighted with boldface text.



78

Figure 3.11: The runtime and memory usage grouped by task. Arrows indicate the minimum

and maximum value across tasks, while the bottom, middle, and top of the boxes indicate

the 25th, 50th, and 75th percentile in values. Colors indicate pipeline or pipeline step(s)

that these tasks belong to.

3.5.3 Summary of Computational Cost

The computational cost of this processing campaign was vast, requiring dedicated comput-

ing resources and a vast storage array to achieve. The total data volume for processing

exceeded 500TB and the runtime exceeded 100,000 core hours. Figure 3.11 visualizes the

CPU runtime and memory usage of the tasks executed while Fig. 3.12 visualizes the amount

of storage used by the datasets produced by these tasks.

Memory requirements were an issue when constructing the survey template, as it was

unknown what the memory requirements would be prior to execution. The memory re-



79

Figure 3.12: The total storage required for the tasks in the pipeline executed. Tasks are

colored by the pipeline or pipeline steps they belong to.



80

Figure 3.13: The runtime and memory usage of coaddition tasks for constructing the survey

template.

quirements can be predicted based on the number of input warps to a coaddition task and

the configurable portion of the input images that are loaded into memory to performing

the coaddition.8 However, it was found that memory requirements typically exceeded the

predicted memory requirements. When constructing the survey template, we used a pro-

gressive prediction strategy where we guessed the amount of memory tasks with few inputs

needed and then checked after execution how much they used, providing a more accurate

prediction for future runs of tasks with larger numbers of inputs. The large memory re-

quirements limit the single-node parallelism available when executing the tasks, resulting

in a ballooning of the node-hour runtime relative to core-hour runtime, which is important

to consider when trying to predict the estimated runtime of the workflow or when request-

ing fixed-size allocations of computing resources from a supercomputing center. Figure 3.13

visualizes the memory usage, runtime, and available parallelism when executing survey tem-

plate coaddition tasks on a machine with 48 cores on an Intel Xeon Platinum 8160 CPU

and 192 GB of RAM as a function of the number of inputs warps.

8This is tuned through the subregionSize configuration of the AssembleCoaddTask.



81

3.5.4 E↵ectiveness of All-Sky Coadds

In our processing campaign, we constructed a single all-sky template using all processed

survey images, in order to mitigate the self-subtraction e↵ect for slow moving objects and

test the predictions of Sec. 3.4. To investigate whether this was an e↵ective mitigation

strategy, we measure the fluxes of a subset of synthetic objects injected into the DEEP

survey images. The subset we analyze are injected synthetic objects in detectors 1, 3, and 5

from survey night April 1, 2019. For each synthetic object and each observing epoch in this

set, we perform forced photometry using the position of the synthetic object and a PSF-

photometry model, obtaining an estimate of its flux and magnitude. The PSF-photometry

model convolves pixel-level flux and inverse variance values around pixel x0, y0:

c =
X

x,y

f(x, y)

�2(x, y)
p(x, y|x0, y0)

a =
X

x,y

p(x, y)2

�2(x, y)

where the sum is over pixels in a cutout around x0, y0 indexed by position x, y, f are flux

values �2 are variance values, and p is a realization of the PSF model on the image at x0, y0.

This convolution produces a PSF flux estimate f̂ , uncertainty �f , and SNR:

f̂ =
c

a

�f =
1
p
a

SNR =
c
p
a
.

Fluxes are zero-point corrected using the equation

f
ref = 10�2/5(zp�zrefp )

⇥ f

where zp is the photometric zero-point from a single-detector photometry model and z
ref
p =

31 is a reference zero-point. Magnitudes are then derived from these fluxes using the equa-

tion

m
ref = �

5

2
log10

⇣
f
ref

⌘
+ z

ref

p .



82

Figure 3.15 visualizes the distribution of the di↵erence between the PSF-fluxes found

through forced photometry at the synthetic object positions and their expected flux given

their simulated injection magnitude. The figure visualizes this distribution for forced pho-

tometry from the calibrated exposure and from di↵erence images produced using the survey

template and a nightly template. Figure 3.14 visualizes the corresponding magnitude dis-

tributions. By inspecting the distribution of fluxes on the calibrated exposures, we find

that the flux measurements skew larger than expected. This is likely due to the presence of

background objects in the calibrated exposures which contaminate the flux measurements.

The flux measurements skew lower than expected for the di↵erence image subtracted with

the nightly template. This is the signal of the self-subtraction e↵ect. The flux measure-

ments return to their expected distribution when using the survey template: there is not

skew towards more or less than is expected in the di↵erence image. This tells us that the

survey template works as expected in reducing the self subtraction e↵ect. When observing

the distribution of magnitudes in Fig. 3.14, we note a peak in lost flux at ⇠ 0.25 mag when

using the nightly template, which is recovered fully with the survey template, which is a

rough measure of the depth—at least for bright objects—recovered by using the survey

template.

Figure 3.16 visualizes a bright (VR ⇠ 20.98) synthetic TNO in the calibrated exposure

and two sets of di↵erence images, in addition to cutouts of the template used to construct

the di↵erence images at the synthetic object location. We find that while the injected flux

from the slow moving TNO is clearly present in the nightly template, it is vastly reduced–but

still faintly present–in the survey template. This visualization indicates that the signal of

the bright object in the template can be further reduced through extra mitigation methods,

such as a modified form of sigma-clipping.

3.6 Conclusion

In this chapter, I discuss how the LSST Science Pipelines can be used to construct di↵erence

images for DECam imaging surveys. I outline a set of tools for performing and managing

these data processing e↵orts in a semi-autonomous and reproducible manner using a light

weight “campaign management” tool. I additionally introduce a method for constructing an



83

Figure 3.14: The measured magnitudes of a subset of the synthetic moving objects injected

into the DEEP survey images. Fluxes are measured on a calibrated exposure (calexp;

blue), as well as a di↵erence image (di↵) using a survey template (allSky; orange) and

nightly (green) template.



84

Figure 3.15: The measured fluxes of a subset of the synthetic moving objects injected into

the DEEP survey images. Fluxes are measured on a calibrated exposure (calexp; blue), as

well as a di↵erence image (di↵) using a survey template (allSky; orange) and nightly (gree)

template.



85

Figure 3.16: A cutout of a single bright (VR ⇠ 20.98) synthetic TNO injected into the

DEEP survey images. Panels visualize from left to right the synthetic TNO in a calibrated

exposure (calexp), in a di↵erence image (di↵) produced via the survey template (allSky), the

cutout of the template at the given location of the object, and the di↵erence and template

constructed using a single night’s data. In the nightly template di↵erence image, darkened

“wings” of lost flux are present in the image while in the nightly template, a large and

bright streak appears due to flux from the moving object. In the survey template di↵erence

image, the “wings” vanish while in the template the flux from the moving object appears

as a faint streak relative to the already faint sources around it.



86

optimal template for recovering slow moving objects in di↵erence images. My tests indicate

that using all survey images and the clipped mean as coaddition statistic is optimal for

recovering slow moving objects. Using this strategy is expected to approximately double

the number of detected TNOs in the DEEP survey. Finally, I summarize an e↵ort to process

all of the images from the DEEP survey using the outlined campaign management tools.

In addition to improvement in the survey template construction methodology, I introduce

improvements to the masking of bad pixels in the survey images. These e↵orts will maximize

the TNO discovery potential for the DEEP survey.



87

Chapter 4

AN EFFICIENT SHIFT-AND-STACK ALGORITHM APPLIED TO
DETECTION CATALOGS

4.1 Introduction

Discovering new solar system objects helps constrain existing and form new theories about

the formation and evolution of our solar system. The boundary of discovery lies in the

observation and recovery of the faintest solar system objects, probing into smaller size

regimes of the di↵erent populations of solar system small bodies: near-earth objects, main

belt asteroids, Jupiter and Neptune Trojan populations, Centaurs, Trans-Neptunian objects,

and comets. Discovering and characterizing the smallest bodies in these populations helps

constrain their size distribution, supporting or refuting di↵erent theories of accretion and

planetary formation.

All telescope surveys are limited in their ability to find faint objects from single-epoch

imaging data, due to the practice of reporting detections that appear at a signal-to-noise

ratio (SNR) of 5 or more to avoid contaminating detection catalogs with noise. Objects that

may be too faint to detect confidently in single-epoch imaging can be recovered through

coaddition of images across epochs (Zackay & Ofek, 2017).

Shift-and-stack, or digital tracking, is an algorithm used to discover faint solar system

objects in multi-epoch imaging of the night sky through coaddition. In the shift-and-

stack algorithm, pixels from a set of multi-epoch images are first aligned along a candidate

trajectory of a solar system object, typically tracking on-sky linear motion, and then coadded

together. If the candidate trajectory aligns with a real object, signal from each image will

accumulate coherently in coaddition, allowing a high-confidence detection of the object

in a coadded “stack” even if the object appears at low signal to noise in any individual

image. In stacks of 100 images, this algorithm can discover objects 10⇥ fainter in flux (2.5

magnitudes) than would otherwise be possible, making it a powerful driver for discovery



88

of faint solar system objects. Shift-and-stack has been broadly applied to drive discovery

of Trans-Neptunian objects (Bernstein et al., 2004b), main belt asteroids (Heinze et al.,

2015b), and near-Earth objects (Shao et al., 2014b).

The main barrier to applying shift-and-stack is its enormous computational expense:

the number of pixel stacks required for a complete search can easily exceed 1010 for small

scale searches and take hours or days of compute time. Speedup can be achieved through

improved parallelism, for example application of shift-and-stack on GPUs (Whidden et al.,

2019; Smotherman et al., 2021), or through reducing the complexity of the algorithm, for

example by re-using values in the stacking process (Nguyen et al., 2024).

Our approach to speedup is to stack detection catalogs, which are necessarily sparser

than the images they are derived from. We utilize the work of Budavári et al. (2017) which

showed that it is possible to stack detection catalogs and recover faint objects by analyzing

the relative Bayesian evidence that a set of detections are generated from an astrophysical

object or a noise process. We combine this approach with and build upon the work of Dalitz

et al. (2017) which outlined a method to find lines in three-dimensional point cloud data

through a Hough transform algorithm. The Hough transform represents a class of template

matching algorithms most often used in the field of computer vision for identifying geometric

features in two-dimensional digital images. The transform was first proposed for identifying

linear tracks in images of bubble chamber experiments (Hough, 1959) and later extended to

identify lines and curves (Duda & Hart, 1972) as well as generalized shapes (Ballard, 1981) in

digital images. The central feature of these algorithms is an accumulator array whose entries

correspond to the likelihood that a given pattern with a certain parameterization exists in

an input signal. In Dalitz et al. (2017), the pattern is a line in three-dimensional space and

the input signal are (x, y, z) coordinates of point cloud data. We modify this method to

search for two-dimensional lines in Right Ascension (↵) and Declination (�) indexed by time

t as an independent variable, operating on a point cloud of (t,↵(t), �(t)) coordinates. This

modification behaves similarly to the Hough transform approach of THOR, in which clusters

are identified in the residuals between the predicted and observed positions of moving objects

using hypothesized orbits (Moeyens et al., 2021). The result is an e�cient shift-and-stack

algorithm that performs 103�105 fewer e↵ective stacks and achieves wall-clock speedups of



89

10�103 relative to an image based shift-and-stack while retaining the ability to find moving

objects that are within the noise of an individual exposure.

Section 4.2 outlines our algorithm and its approach to shift-and-stack. The algorithm

is validated by applying it to an imaging dataset from the Dark Energy Camera (DECam;

Flaugher et al. (2015)), outlined in section 4.3. We find that the algorithm achieves the

promised speedup and is able to recover moving objects fainter than the SNR cuto↵ used

to construct the detection catalog. Additionally, a reference implementation is provided via

GitHub.1

4.2 E�cient And Exhaustive Stacking of Detection Catalogs

Our algorithm applies the shift-and-stack technique to detection catalogs: lists of the obser-

vation times (t) and on-sky positions i.e. right ascensions (R.A. / ↵) and declinations (Dec.

/ �) of observed astronomical sources. The rate of motion and curvature of the on-sky posi-

tion of a solar system object is dependent on the object’s orbit, and typically most strongly

dependent on its distance from the Earth: objects near the earth tend to move faster on the

sky while those farther away move more slowly. All solar system objects appear to exhibit

linear motion on the sky over certain timescales. Heinze et al. (2015b) notes that this time

is 1-2 hours for near earth objects, 8 hours for main belt asteroids, and more than 24

hours for trans-Neptunian objects. While shift-and-stack can be applied exhaustively to

track a space of orbits, an exhaustive search over on-sky linear motion will track all orbits

su�ciently over certain timescales. This algorithm focuses on this regime: searching for

linear motion in the on-sky positions of sources in the detection catalog.

In a locally-tangent plane approximation of the celestial sphere, linear on-sky motion is

modeled using the equations

↵(t) = (t� t0)v↵ + ↵0

�(t) = (t� t0)v� + �0

where v↵ is the on-sky velocity in RA, v� is the on-sky velocity in Dec., and ↵0, �0 are the

RA and Dec. at a reference epoch i.e. when t = t0.

1https://github.com/dirac-institute/salad

https://github.com/dirac-institute/salad


90

If one makes a guess at the motion using a hypothesis velocity v
t
↵, v

t
�, the residuals of

the sky position are

↵(t) = (t� t0)v↵ + ↵0

↵
t(t) = (t� t0)v

t
↵ + ↵

t
0

�↵ = ↵(t)� ↵
t(t) = (t� t0)(v↵ � v

t
↵) + (↵0 � ↵

t
0)

�(t) = (t� t0)v� + �0

�
t(t) = (t� t0)v

t
� + �

t
0

�� = �(t)� �
t(t) = (t� t0)(v� � v

t
�) + (�0 � �

t
0) .

From this equation, and considering just right ascension ↵ (the same results will hold for �),

we note that the magnitude of the residuals �↵ scales linearly with the di↵erence between

the observation time t and the reference epoch t0 and with the di↵erence between the trial

velocity v
t
↵ and the true velocity v

⇤
↵. For a given moving object that has been observed

multiple times and with a fixed hypothesis v
t
↵, the residuals are maximized at the time

farthest from the reference epoch

max [�↵] = max [t� t0] (v
⇤
↵ � v

t
↵) + (↵⇤

0 � ↵
t
0)

and minimized at the time closest to the reference epoch

min [�↵] = min [t� t0] (v
⇤
↵ � v

t
↵) + (↵⇤

0 � ↵
t
0) .

This implies that the residuals among all of the observations of a single object are bounded

in a range �x

�x = max [�↵]�min [�↵]

= max [t� t0] (v
⇤
↵ � v

t
↵) + (↵⇤

0 � ↵
t
0)

�min [t� t0] (v
⇤
↵ � v

t
↵)� (↵⇤

0 � ↵
t
0)

= (max [t]�min [t])
�
v
⇤
↵ � v

t
↵

�

�x = �t�v↵



91

where �t is the time di↵erence between the first and last observation of the object and �v↵

is the di↵erence between the true and hypothesized velocity of the object. This result implies

that the positional residuals of a given object are bounded within some radius �x. �x will

be large when the velocity hypothesis is far from the truth, say for stationary objects, and

small when the velocity hypothesis is close to the truth, say for moving objects. If instead

of fixing the hypothesis vt↵ and observing how �x changes we choose to fix the value of �x

and vary the hypothesis, we find that an object’s residuals will stay in a cluster of size �x

when

�v↵ 
�x

�t
.

The same relationship is found when analyzing the residuals in declination

�v� 
�x

�t
.

These results show that a cluster finding algorithm can be applied to the space of projected

positions using the clustering radius �x to recover moving objects with true velocities

within �v↵,�v� of a hypothesis v
t
↵, v

t
�. These results also provide a method to construct

the set of velocities that must be hypothesized to perform a complete blind search for a

target population of moving objects: simply test all on-sky velocities between vmin and

vmax which di↵er in their ↵ and � components by no more than �v↵ and �v�. For a given

value of �x, this results in a set of velocities V of size

|V| =
vmax,↵ � vmin,↵

�v↵
⇥

vmax,� � vmin,�

�v�

=

✓
�t�v

�x

◆2 (4.1)

where �v = vmin� vmax is assumed to be the same for ↵ and �. The complete blind search

can be thought of as exploring the set of velocity hypotheses that bound the residuals of

objects from the target population within a threshold �x.

Once a cluster is found in the projected space, its exact velocity is not known except

that it is plausibly within �x/�t of the initial hypothesis velocity. The true velocity of

the object can be recovered by repeating the blind search procedure on the clustered data

alone and with �x set to a smaller value, perhaps a value that would be reflective of the



92

expected positional residuals given the object’s expected brightness. However, if the cluster

is relatively pure, meaning it mostly contains detections from a single moving object, a data-

driven approach will su�ce in which case the true velocity of the object can be recovered via

multivariate regression. The multivariate regression problem with N observations is cast as

Y = B
T
X + c+ ✏

where Y 2 RN⇥q are the response variables, X 2 RN⇥p are the independent variables, B 2

Rp⇥q is the slope matrix, c 2 Rq is the intercept vector and ✏ ⇠ N (0,⌃✏) is a random variable

representing errors in observations and is modeled as a q-dimensional normal distribution

with zero-mean. For clarity, we can translate this into the problem at hand of estimating ↵

and � as a function of time t:
2

6664

↵1 �1

· · · · · ·

↵N �N

3

7775
=

2

4v↵
v�

3

5
T

2

6664

t1

· · ·

tN

3

7775
+
h
↵0 �0

i
+ ✏ .

The slope, intercept, and covariance of the errors are estimated from the mean and covari-

ance matrices of the response and independent variables. If we partition the mean µ and

covariance ⌃ according to X and Y

µ =

2

4µY

µX

3

5⌃ =

2

4⌃XX ⌃XY

⌃Y X ⌃Y Y

3

5

then the slope matrix is estimated from the sample mean µ̂ and sample covariance matrix

⌃̂ as

B = ⌃̂�1

XX⌃̂XY

while the intercept vector is

c = µ̂Y �B
T
µ̂X

and the covariance of the errors is

⌃̂✏ = ⌃̂Y Y �B
T ⌃̂XXB .



93

Once the velocity of the moving object is found via regression, the object can be considered

recovered.

The sample mean and covariance matrix are sensitive to the inclusion of outliers. If

the cluster contains noise observation or contaminating detections from artifacts, then the

recovered trajectory can be biased away from the truth. Multivariate regression can still be

used if made robust to the inclusion of noise. In the prior formulation, a robust estimator of

the mean and covariance of the data will provide a robust estimate of the regression parame-

ters. The Minimum Covariance Determinant (MCD; Rousseeuw (1985); Peter J Rousseeuw

& Gulló (2004)) provides such a method for robust determination of the mean and covari-

ance of a dataset. This method enumerates over subsets of the dataset of size n/2  h < n

to find a subset whose covariance determinant is minimized. The mean and covariance of

this subset are reported as robust estimates of the sample mean and sample covariance.

The subset with the minimum covariance determinant achieves the minimal scatter about

a central point i.e. this subset excludes outliers that may be present in the full dataset.

When setting h = n/2, this method will be robust up to 50% noise contamination in the

dataset, achieving the best possible break down point of any method. Rousseeuw & Driessen

(1999) introduces the FAST-MCD, which enables fast iteration over subsets of large datasets

to find either the exact MCD or an approximation of it. An implementation of FAST-MCD

is provided in scikit-learn, enabling its use in Python. A Python implementation of the

FAST-MCD for robust multivariate regression is provided by us.2 Figure 4.1 visualize how

the technique of robust multivariate regression can be used to recover a moving object’s

trajectory in the presence of noise.

4.2.1 The Algorithm

Based on these observations, our algorithm follows, which is in essence the iterative Hough

transform algorithm presented by Dalitz et al. (2017). Take as input a detection catalog

C =
h
↵i �i ti

in
i=1

2https://github.com/stevenstetzler/robust_linear_regression

https://github.com/stevenstetzler/robust_linear_regression


94

Figure 4.1: The on-sky coordinates of a moving object with respect to time. The dashed

black line represents a trajectory estimated using least squares multivariate regression, which

does not predict the trajectory accurately due to the presence of outliers in the dataset.

The solid black line represents a trajectory estimated using robust multivariate regression

utilizing the Minimum Covariance Determinant (MCD), which accurately predicts the mov-

ing object trajectory in the presence of outliers.

a set of hypothesis velocities

V =
h
v
j
↵ v

j
�

im
j=1

a clustering radius �x and a minimum value for the number of detections we expect from

each moving object Nmin.

1. Project: First, project the detection catalog to the reference epoch, which we choose

to be the minimum of all of the observation times contained in the detection catalog.

2. Cluster: Next, for each hypothesis velocity, construct a two dimensional histogram

of the projected positions using a resolution of �x. Consider the set of histograms

jointly as a three dimensional histogram.



95

3. Find clusters: In a while loop, identify the location of the maximum of the histogram.

If the maximum is < Nmin, break to the next stage. Otherwise, identify the points in

the detection catalog that contributed to that maximum. These points form a cluster.

Remove those points from the histogram. Continue until the loop is broken.

4. Refine: For each cluster produced, perform multivariate regression with the MCD to

fit a linear trajectory to the points recovered.

5. Gather: Gather points from the original detection catalog within �x of the refined

line.

6. Optional: Repeat steps (4) and (5) until convergence i.e. the set of gathered points

does not change in each iteration.

4.2.2 Setting the algorithm parameters

It remains to be addressed how one should set the parameters of the algorithm: �x and

Nmin. We will address this point in this section. Both are related to the expected purity

of the clusters found by the algorithm. If the input detection catalog is already pure with

no false positive detections, the value of �x should be set based on the sky density of

astronomical sources in the catalog. If �x is set too large, then one will expect significant

contamination in the space of projected positions from stationary sources as well as other

moving objects. If the input catalog is constructed at low-SNR, meaning some (or even

most) of the detections in the catalog are spurious, then the value of �x should be set to

control the purity of the resulting cluster in the algorithm. A larger �x will accumulate

more noise detections while a smaller �x will accumulate fewer noise detections in a single

cluster.

The value of �x can be determined by reasoning about the number of noise peaks Nnoise

and real object peaks Nsignal expected to land in a bin of size �x
2. The best value to

choose for �x maximizes the ratio E[Nsignal/Nnoise], which is akin to a likelihood ratio. If

Nsignal/Nnoise > 1, then the true moving object can be distinguished from the noise peaks



96

included. If Nsignal/Nnoise > 1, then the contamination rate Nnoise/(Nsignal +Nnoise) < 0.5

and we expect the MCD multivariate regression technique to recover the object.

Assuming the value of �x is chosen to maximize signal relative to noise, then the value

of Nmin determines the number of false positives produced by the algorithm. It can be

chosen so that

P (Nnoise � Nmin)  ✏

where ✏ represents an admissible false positive rate of detected objects. Under the algorithm

considered, a reasonable value of ✏ is

✏ =
Nfalse

Nstacks

where Nfalse is the maximum number of false results produced by the algorithm and Nstacks

is the number of independent stacks performed. If we assume the trial velocities and stack

bins are independent, then the number of stacks is

Nstacks = |V|
⌦

�x2

=
�t

2�v
2⌦

�x4

(4.2)

using Eq. 4.1 to substitute in |V| and where ⌦ is the solid angle of sky searched. What

remains is to specify the distributions of Nnoise and Nsignal.

The distribution of noise peaks has been considered in detail by Budavári et al. (2017)

which specifies the spatial distribution of noise peaks as a function of the detection statistic.

Assuming the detection process uses a Gaussian window function (i.e. PSF detection) and

the sky noise is white, the surface density of noise peaks produced by the detection process

is (using Budavári et al. (2017) Eq. 40 and 46)

npk =
exp(�z

2
/2)

2⇡2a2

 p
2

4
z +B

 p
2

2
z, 1

!
1

2
+

3

4
z

�
+B

 p
2

2
z, 2

!!

where z is the value of the detection statistic, a is the PSF size, and

B(s, b) ⌘
⇡

b
exp

✓
s
2

2b

◆
1 + erf

✓
s

p
2b

◆�
.



97

The cumulative number of peaks above threshold ⌫th is then

�(⌫th) =

Z 1

⌫th

npk(z)dz . (4.3)

The spatial distribution of peaks is a Poisson point process, meaning the number of noise

detections Nnoise is Poisson distributed

Nnoise ⇠ Pois (⇤)

with a rate ⇤ equal to

⇤ =

Z

A
�(⌫th)dA

where A represents a spatial region of interest. The probability of having Nnoise = k noise

peaks in a square region with area �x
2 (in units of the PSF size a) is

P (Nnoise = k) =
⇤k

e
�⇤

k!

=
(�(⌫th)�x

2)ke��(⌫th)�x2

k!
.

If we consider multiple epochs i with di↵erent values of the PSF size ai, the number of noise

peaks above a threshold ⌫th within a stacked bin of size (�x/ai)2 is

Nnoise ⇠

X

i

Pois(⇤i)

⇠ Pois

 
X

i

⇤i

!

⇠ Pois

 
X

i

�(⌫th)(�x/ai)
2

!
.

The number of real object detections Nsignal depends on the probability that an object

is observed with an above-threshold flux and the probability that its observed position is

within the spatial region of interest. The observed flux of a source is normally distributed

f̂ ⇠ N
�
f,�

2

f

�

where f̂ and f are the observed and true fluxes of an object, and �f is the associated

uncertainty with the flux measurement. The object is detected above a threshold fth with



98

probability

P (f̂ � fth|f) =
1

2
erfc

✓
fth � f

�
p
2

◆
.

Expressed in term of the signal to noise ⌫ = f/�f we find

P (⌫̂ � ⌫th|⌫) =
1

2
erfc

✓
⌫th � ⌫
p
2

◆
.

The observed position x of the object at a single epoch is also normally distributed

↵̂ ⇠ N
�
↵,�

2

↵

�

�̂ ⇠ N
�
�,�

2

�

�

where �↵ and �� are the positional uncertainties. The positional uncertainties depend on

the PSF size a and the signal to noise of the object ⌫. Portillo et al. (2020) provides a

derivation of the positional uncertainties (Eq. 14):

�
2

↵ = �
2

� = 2a2
 
f
2

�2

f

!�1

= 2
a
2

⌫2

where ⌫ is the object signal to noise. The probability that an object is observed within �x

of the true position ↵, � is then

P (|↵̂� ↵|  �x/2) = 1� 2P (↵̂� ↵  ��x/2)

= erf

✓
�x

�↵2
p
2

◆
.

Substituting the relationship between �↵ and signal to noise ⌫ we find

P (|↵̂� ↵|  �x/2) = erf

✓
�x⌫

4a

◆
.

The probability that both ↵ and � are within �x is then

P (|↵̂� ↵|  �x/2, |�̂ � �|  �x/2) = erf

✓
�x⌫

4a

◆2

.



99

If we assume the trial velocity v
t
↵, v

t
� exactly matches the true moving object trajectory,

such that ↵(t) = ↵
t(t) and �(t) = �

t(t), then the probability of the detection from a single

epoch landing in a bin of size �x
2 is

P (⌫̂i � ⌫th, |↵
t(t)� ↵̂i|  �x, |�

t(t)� �̂i|  �x)

=
1

2
erfc

✓
⌫th � ⌫
p
2

◆
erf

✓
�x⌫

4a

◆2

.

Across many epochs, this probability is repeated with a per-epoch PSF ai. Nsignal is the

number of times that this outcome occurs and is the result of several Bernoulli trials with

per-epoch rates. Nsignal is then Poisson Binomial distributed. Making the simplifying as-

sumption that the per-epoch PSF is constant and equal to a, then Nsignal follows a Binomial

distribution:

P (Nsignal = k) =
Y

i2D
pi

Y

i2Dc

(1� pi)

where p is the probability of detection in a single epoch and D (Dc) is the set of epochs the

object is (not) detected in.

The distributions of Nsignal and Nnoise depend on the SNR of the object, the SNR

threshold used to derive the catalog, and the PSF width at each epoch. Figure 4.2 provides

a visual guide for choosing reasonable values of �x and Nmin based on the expected values of

Nsignal and Nnoise. Each panel in the figure plots the expected number of counts E[Nsignal]+

E[Nnoise] as a function of the aperture size �x for objects of varying SNR ⌫ found in a

detection catalog of varying SNR thresholds ⌫th. For each value of ⌫, the plot indicates when

E[Nsignal]/E[Nnoise] (used as an approximation of the harder to compute E[Nsignal/Nnoise])

is greater than or less than 1, indicating that an object is recoverable or not using the

MCD regression technique. Additionally, a predicted value for Nmin that is expected to

produce 100/Nstacks false detection candidates for an MBA and TNO search is overplotted,

representing the “noise floor” for a given search; setting Nmin lower than these values can

recover fainter objects at the expense of increasing numbers of false positives. Notably, this

figure illustrates that not all objects of a given SNR ⌫ are recoverable over all aperture sizes

(or any in the case of ⌫ = 0.5). This is due to the scaling of the positional uncertainties



100

with SNR, which is expected to diverge as ⌫ ! 0; at some or all aperture sizes, the rate

with which noise detections are accumulated surpasses the real object detection rate.

Figure 4.2: The expected number of detection counts in a bin of size �x for objects of

di↵erent SNR ⌫ found in catalogs of di↵erent SNR thresholds ⌫th. Thick (thin) colored

lines approximately indicate when the expected number of signal detections will be larger

(less) than the expected number of noise detections i.e. E[Nsignal]/E[Nnoise]. Black solid

(dashed) lines indicate values of Nmin that produce a false positive rate of ✏ = 100/Nstacks

in an example MBA (TNO) search covering ⌦ = 162 arcmin2 with a = 1 arcsec seeing and

a �t = 4 hour time baseline.



101

4.2.3 Algorithmic Scaling

An image-based shift-and-stack algorithm has algorithmic complexity in number of opera-

tions that scales as

O(Nt ⇥Npixels ⇥ |V|)

or

O

✓
Nt ⇥

⌦

p2s
⇥ |V|

◆
(4.4)

where Nt is the number of epochs/number of images stacked, Npixels is the number of pixels

per image, |V| is the size of the velocity set searched, ⌦ is the solid angle subtended by a

single image, and ps is the image pixel scale. This is due to the fact that two operations

(shift + add) are performed on every pixel in the set of provided input images for each

direction searched. The memory usage of this algorithm scales as

O(Nt ⇥Npixels) (4.5)

since all images need to be stored in memory during the procedure.

In our algorithm, Npixels is replaced with Npeaks where Npeaks is the number of detection

peaks per image. Assuming the detections are dominated by noise, then Npeaks is computed

relative to Npixels using Eq. 4.3 as

Npeaks = �(⌫th)
Npixels

a2p

= �(⌫th)
Npixelsp

2
s

a2

= �(⌫th)
⌦

a2

where ⌦ is the solid angle subtended by a single image, ps is the pixel scale, ap is the PSF-

width in pixels and a is the PSF-width in angular units. The process of source detection

scales as

O (Nt ⇥Npixels)



102

in operations and

O (Npixels)

in memory assuming the detection process is applied sequentially to the input images. The

complexity, accounting for steps 1 (Project) and 2 (Cluster) of our algorithm, is then

O

✓
Nt ⇥ �(⌫th)

⌦

a2
⇥ |V|

◆

in operations, while the memory scaling is

O

✓
Nt ⇥ �(⌫th)

⌦

a2
⇥ |V|+

⌦

�x2
⇥ |V|

◆

since the projected positions of the detection catalog are stored in memory in addition to

the Hough space. Step 3 (Find Clusters) scales in operations as

O

✓
Nresults ⇥

⌦

�x2
⇥ |V|

◆

since it involves finding a maximum entry in the Hough space of this same size. The total

complexity of the catalog-based shift-and-stack approach is then

O

✓
Nt ⇥Npixels +Nt ⇥ �(⌫th)

⌦

a2
⇥ |V|+Nresults ⇥

⌦

�x2
⇥ |V|

◆
(4.6)

in operations and

O

✓
Npixels +Nt ⇥ �(⌫th)

⌦

a2
⇥ |V|+

⌦

�x2
⇥ |V|

◆
(4.7)

in memory accounting for all steps.

Taking only the terms in Eqns. 4.4, 4.5, 4.6, and 4.7 which scale with the velocity

set |V| and excluding result finding (i.e. Nresults = 0), we can calculate the speedup that

our algorithm (2) attains relative to an image-based approach (1) in the shift-and-stack

procedure itself:

s =
Nt ⇥

⌦

p2s
⇥ |V1|

Nt ⇥ �(⌫th)
⌦

a2 ⇥ |V2|

=
a
2
⇥ |V1|

�(⌫th)p2s ⇥ |V2|

=
a
2
p ⇥ |V1|

�(⌫th)⇥ |V2|



103

while the relative memory usage is

r =
Nt ⇥ �(⌫th)

⌦

a2 ⇥ |V2|+
⌦

�x2
2
⇥ |V2|

Nt ⇥
⌦

p2s

= |V2|

✓
�(⌫th)

p
2
s

a2
+

p
2
s

�x2
2

◆
.

Assuming the same velocity range and time span is searched, and the two searches di↵er by

�x, then using Eq. 4.1, the speedup and relative memory usage are

s =
a
2
p

�(⌫th)

✓
�x2

�x1

◆2

(4.8)

r =

✓
�v�t

�x2

◆2✓
�(⌫th)

p
2
s

a2
+

p
2
s

�x2
2

◆
. (4.9)

Our algorithm is e�cient in the sense that it performs fewer e↵ective stacks relative to

an image-based search, due to the scaling of speedup with the value of �x
2. Assuming

ap = 3 pixels, �x1 = 1a (1 PSF width) for an image-based search and �x2 = 5a (5 PSF

widths) for the catalog-based search, then at ⌫th = 0, the speedup attained is ⇡ 4⇥ 103. As

implemented, the greatest weakness of our algorithm is in its memory usage. Since all search

directions are considered jointly and the projected positions of all detections are stored at

once, the memory footprint can quickly outgrow the capacity of most machines at low-SNR

and low values of �x.

4.3 Application

In this section, we describe searches for faint moving objects in images from the Dark Energy

Camera (DECam). We perform searches for both slow-moving Trans Neptunian Objects

(TNOs) and faster-moving Main Belt Asteroids (MBAs). We analyze the performance of

the algorithm as a function of the SNR of the catalog used in terms of its ability to recover

implanted fake objects and the computation time and memory needed to perform the search.

4.3.1 Data Used

The data used are a single night of data from the DECam Ecliptic Exploration Project

(DEEP; Trilling et al. (2024)). The DEEP observing strategy involves tiling the sky around



104

the invariable plane of the solar system using a long-stare observing strategy across multiple

years (2019-2022). Each night of the survey comprises of one or more long-stare pointing—

sequences of 120 second VR-band exposures taken with DECam over a period of 2-4 hours.

The data we test our algorithm with are selected from the third night of the survey—April

3, 2019–and the long-stare observation of one field of the survey—A0c—which includes 104

120-second VR-band exposures.3

Data are processed using the LSST Science Pipelines (LSP; Bosch et al. (2018, 2019))

version w 2024 09.4 Raw science images, VR-band dome flat field images, and bias im-

ages are downloaded from the NOIRLab archive.5 Bias and flat field images are processed

through the LSP calibration product pipeline (cp pipe) for DECam. The output of this

pipeline are per-detector nightly stacked flat and bias master calibration files which are

applied to the science images.

The science images are processed using the LSP data release product pipeline (drp pipe).

Each detector is processed individually including defect masking, application of the master

calibrations, cosmic ray detection and repair, PSF model fitting to bright stars, background

subtraction, source detection, fitting of a world coordinate system (WCS) by crossmatching

detected sources to the Gaia DR3 (Gaia Collaboration et al., 2016b, 2023) catalog, and pho-

tometric zero point fitting by crossmatching detected sources to the Pan-STARRS1 catalog

(Chambers et al., 2019). The photometric zero point is fit using r-band measurements from

Pan-STARRS1, neglecting a color term correction for the VR-band images. The VR-band

overlaps well with the r-band, meaning the resulting photometry will be approximately

correct.

Synthetic moving objects are injected into the images after WCS/PSF/photometric zero

point fitting (so that accurate astrometric and photometric models are available) to test the

recovery e�ciency of this algorithm. The synthetic objects are drawn from two populations

that model the existing population of main belt asteroids and trans-Neptunian objects. The

3Trilling et al. (2024) outlines the nomenclature used for field naming: A refers to the A semester, A0 to
a patch which tracks the year-to-year motion of TNOs, and A0c to a single field observed in that patch.

4The LSST Science Pipelines are available freely at pipelines.lsst.io.

5https://astroarchive.noirlab.edu/

pipelines.lsst.io
https://astroarchive.noirlab.edu/


105

distribution of on-sky velocities and their injected magnitudes are visualized in Figure 4.3.

Detectors that were successfully processed through the stage of PSF and WCS fitting

are warped/resampled onto an identical pixel grid and coadded using the LSP

CompareWarpAssembleCoaddTask, which compares the result of direct and PSF-matched

warps to construct the coadd. This coadd acts as a template which is subtracted from the

processed science images using the LSP SubtractImageTask based on the method of Alard-

Lupton (Alard & Lupton, 1998). The result are di↵erence images in which ideally only non-

static astronomical sources remain: galaxies and non-variable stars are removed whereas

variable stars and moving objects remain. The image subtraction is typically not perfect,

especially when the WCS solutions are not perfect, leaving behind poorly subtracted stars.

The cores of bright stars are typically also not modeled well in the template and remain in

the single epoch images after subtraction. These artifacts can be a source of contamination

in detection catalogs derived from di↵erence images. The di↵erence images are the inputs

to the algorithm as described.

4.3.2 Source Detection

We perform source detection using the LSP SourceDetectionTask. This task uses a PSF

detection model to determine the location of putative sources. An input image—pixel-

level flux values and their estimated variance—are convolved with the PSF. A ratio of the

convolved flux and variance is computed to form an image where each pixel represents the

SNR of a putative detection at that pixel location. This SNR-image is thresholded at a

provided SNR cuto↵ to form “footprints” or regions of pixels above-threshold. Peaks in

SNR are found in the footprints and reported as a putative source detection, including its

pixel location and SNR. Properties of the source such as the brightness, shape, and location

(at a sub-pixel level) can be further refined using model fitting.

Figure 4.4 visualizes the empirical number of peaks as a function of SNR threshold for

a real di↵erence image from DECam. The number of peaks is far fewer than the number of

pixels in the image across all values of the SNR threshold. Detection peaks are associated

with a sky-location RA ↵ and Dec � via a world coordinate system (WCS) fit to the exposure



106

as well as an observation time t. For moving objects, the observation time is set to the

midpoint of the exposure, including the time to operate the shutter. Figure 4.5 visualizes

the sky coordinates of a SNR � 5 detection catalog derived from a sequence of 104 DECam

exposures limited to a single detector. Moving objects appear clearly as lines in this stacked

visualization of the input detection catalogs. The goal of our algorithm is to recover these

lines.

4.3.3 Search

We used our catalog shift-and-stack algorithm to search for TNOs and MBAs in the pro-

cessed di↵erence images. To search for TNOs, we used a velocity range of 0.003 � 0.04

deg/day (0.45 � 6 arcsec/hour) and for MBAs a velocity range of 0.1 � 0.5 deg/day. Test

trajectories were generated using these velocity ranges and covering all on-sky angles. These

rates cover the span of angular velocities of synthetic sources injected into the images. We

search for objects in each DECam detector in the single long-stare pointing. Of the 62

detectors in the DECam focal plane, we exclude detector 2 since it is masked entirely in

the data reduction process and detector 61 since it has data quality issues. We searched

for moving objects in detection catalogs constructed using di↵erent SNR thresholds. The

value of �x was varied among the MBA and TNO searches for each SNR threshold used.

Table 4.1 enumerates the values of �x used for each search. �x was limited to 10 and

the SNR of the detection catalog to 3 for the MBA search due the excessive computational

cost involved. For each search performed, the first 1000 clusters with the highest number of

detections are output. Each cluster is passed through the MCD regression step, resulting

in a refined estimate of the candidate object’s trajectory. For each refined trajectory guess,

detections are gathered from the per-epoch detection catalogs that are within a positional

distance threshold of �x.

4.3.4 Performance

The performance of this algorithm is validated by its ability to recover the injected synthetic

objects i.e. the completeness of the search. We measure completeness as a function of



107

�x (a)

⌫ TNO MBA

1 1 -

2 1 -

3 3 10

4 10 10

5 10 10

Table 4.1: Values of �x in units of the PSF width a for each search performed. A value of

- indicates the search was not performed for the combination of ⌫ and population.

magnitude using a parametrized model as in Bernardinelli et al. (2024)

p(m|c, k,m50) =
c

1 + exp (k(m�m50))
(4.10)

where m50 is the magnitude at 50% completeness, c is the fraction of objects detected

when m ⌧ m50, and k is a steepness parameter that encodes how rapid the drop-o↵ in

completeness is at m50. The parameter values are estimated by maximizing the likelihood

L =
Y

i2D
p(mi|c, k,m50)

Y

i2Dc

(1� p(mi|c, k,m50))

where D are the set of synthetic objects recovered, Dc is the set of synthetic objects not

recovered, and mi is the magnitude associated with a single synthetic object.

Search candidates are matched to synthetic objects by comparing their trajectories.

Trajectories are matched by comparing the di↵erences in the positions predicted by the

trajectories at each epoch. Two trajectories are considered matched if their predicted po-

sitions di↵er by less than 1 arcsec in 50% or more of the epochs. A synthetic object is

considered recovered if its trajectory is successfully matched to a candidate trajectory from

our algorithm.

A single-epoch SNR ⇠ 5 limiting magnitude is estimated by matching the catalog of

synthetic objects to detected sources in a SNR � 5 detection catalog using a 1 arcsec

matching radius. For each synthetic object injected, the fraction of times it appears in the



108

SNR � 5 detection catalog is measured. This fraction follows the same statistics as the

survey completeness, allowing us to model it as a function of magnitude using Eq. 4.10.

This produces a single-epoch SNR ⇠ 5 limiting magnitude of m50 = 23.7. A theoretical

upper limit on the m50 depth achievable through coaddition can be found by considering

the relative flux of a single-epoch detection at SNR ⌫ and a coadded detection at the same

SNR ⌫:

⌫ =
f

�
=

fcoadd

�coadd

!
f

fcoadd
=

�

�coadd
.

If we assume constant background noise and image quality, the uncertainty in the coadd

scales as

�coadd =

s
�2

Nt

p
Nt�coadd = �

which lets us compute the relative single-epoch and coadded flux as

f

fcoadd
=

p
Nt�coadd

�coadd
=
p
Nt

and is equivalent to a magnitude di↵erence of

m
coadd

50 �m50 =

✓
�
5

2
log10(fcoadd

◆
+ zp)�

✓
�
5

2
log10(f) + zp

◆

=
5

2
log10

✓
f

fcoadd

◆

=
5

2
log10(

p
Nt)

where zp is a shared photometric zero-point. Given Nt = 104, we find that m
coadd
50

=

m50 +
5

2
log10(

p
Nt) = 26.2.

Figure 4.6 visualizes the completeness of the TNO and MBA searches performed after

matching the 1000 candidate trajectories per-search to synthetic object trajectories. The

solid black link in this figure represents the estimated single-epoch SNR � 5 limiting mag-

nitude of m50 = 23.7 while the dashed black line represent the theoretical achievable depth

of an optimal coadd at mcoadd
50

= 26.2.



109

SNR TNO m50 MBA m50

5 23.96± 0.06 24.19± 0.05

4 24.29± 0.05 24.41± 0.07

3 24.68± 0.04 24.84± 0.06

2 25.21± 0.05 -

1 25.87± 0.21 -

Table 4.2: The m50 depth achieved in the TNO and MBA searches of a catalog of the given

SNR. A value of - indicates the search was not performed.

The completeness varies as a function of the parameter Nmin. Greater m50 depth can

be achieved by decreasing the value of Nmin at the cost of increasing the number of false

results included. This is a choice that the operator of this algorithm must make, and will

depend on the operator’s desired false positive rate. This trade-o↵ is explored by choosing

an Nmin cuto↵ and removing candidate trajectories from the set of 1000 candidates per

search. For each value of Nmin, the m50 depth, the number of candidate trajectories, and

the number of fakes found are evaluated. These values as a function of Nmin are visualized

in Fig. 4.7. We find that decreasing the value of Nmin increases m50 depth and the number

of synthetic objects recovered, as expected. However, this comes at the cost of vastly

increasing the number of results produced. Most of the numerous results produced at low

values of Nmin are likely false-positive candidates due to stacks of noise detections. The

scaling of achievable m50 depth with the SNR of the input catalog is visualized in Fig. 4.8

and enumerated in Tab. 4.2 by choosing a value of Nmin for each search that corresponds

to 200 results per CCD.

4.3.5 Computational Cost

The computational cost of the algorithm scales from negligible to vast depending on the

range of velocity trial trajectories, the SNR of the detection catalog, and the value of �x.

Figure 4.9 visualizes the median wall-clock runtime and memory usage among the searches



110

performed for TNOs and MBAs. Wall-clock time includes the time just for the algorithm

operations, and excludes the time for source detection on the input images. The search

runtime is ⇠ 1 min (0.017 core-hours) for SNR 3-5 detection catalogs using the values

of �x in Table 4.1 whereas the memory usage is ⇠ 1 � 10 GB for the same runs. The

computational cost balloons for the TNO searches at SNR 1 and 2, where �x = 1 in

which case the memory usage is ⇠ 10� 100 GB and search wall-clock times can range from

⇠ 10� 40 minutes (0.17� 0.67 core-hours).

In Fig. 4.10, we explore the compute cost and m50 depth trade o↵ of our algorithm by

measuring the CPU-time and memory required to perform the TNO searches and compar-

ing that to the m50 depth achieved, assuming 200 results per-detector are reported. We

report only the amount of CPU time spent in performing the core-search component of our

algorithm, excluding image loading, source detection, and trajectory refinement. The mem-

ory usage reported is the maximum amount of memory used during this procedure. The

scaling of CPU time and memory usage as a function of �x is also visualized in Fig. 4.11,

verifying the results predicted by Eq. 4.8.

We additionally make an explicit comparison in the depth achieved when utilizing an

image-based shift-and-stack approach. We utilize the KBMOD software (Whidden et al., 2019)

to perform a set of GPU-accelerated shift-and-stack searches on the same images used in

this study.6 We used KBMOD to search a similar range of on-sky velocity rates but covering

180� in angle around the ecliptic as opposed to the 360� angular range we searched. Results

that had a coadded likelihood of 10 or more were reported by the search. A value of

m50 = 25.47 ± 0.01, visualized as a dotted black line in Fig. 4.10, was computed for the

KBMOD search using a similar method of matching search results to synthetic injected sources

and modeling the completeness using Eq. 4.10. The SNR � 5, 4, 3, 2 searches we performed

produce an m50 depth that is smaller than the KBMOD search. Our searches at SNR � 1

surpass the m50 depth of the KBMOD search, achieving a depth of m50 = 25.87± 0.21. These

numbers provide only rough depth comparison between the catalog and image-based shift-

and-stack approach, as we make no attempt to compare or achieve parity between the two

6KBMOD is available online at https://github.com/dirac-institute/kbmod/

https://github.com/dirac-institute/kbmod/


111

implementations in terms of false positive and true positive rates, which are ultimately the

factors that matter when deriving scientific insight from these searches. However, we can

conclude that our method of stacking detection catalogs can achieve comparable depths as

an image-based approach in a practical sense.

The KBMOD software is GPU-accelerated and provides no CPU-only implementation of

its search, making it challenging to perform a compute-time comparison between these two

methods. In order to make this comparison explicitly, we produced a CPU-implementation

of the approach outlined in Whidden et al. (2019). Our implementation convolves input

images with the PSF to form a per-epoch likelihood image, the combination of convolved

inverse-variance weighted flux values and convolved inverse-variance values. The likelihood

images are shifted at the pixel level by amounts that correspond to the on-sky linear tra-

jectories used in our TNO search. For each trajectory and corresponding set of pixel shifts,

the convolved weighted flux and convolved inverse variance values are added together across

epochs at the pixel level. The ratio of the summed convolved flux and the square-root of

the summed convolved variance is taken to form an image of coadded detection SNR. Pixels

in this SNR image that are above a provided threshold are found, which correspond to a

putative coadded detection for the given trajectory. In this implementation, we perform and

measure the CPU-time required for the pixel shifts, additions, divisions, and thresholding,

excluding the actual reporting or filtering of results. This allows us to make a direct compari-

son of the compute-time (i.e. number of operations) required for the core search components

of the catalog and image-based shift-and-stack approaches. We performed a single search us-

ing the same velocity and angle ranges used in our TNO-search with a trajectory divergence

of no more than 1 arcsecond over the timespan of the data. The CPU-time required for the

search was 2.54 hours and required 17.5 GB of memory. While the CPU-time measurement

is likely faithful to the expected runtime of the image-based shift-and-stack, the memory

usage can likely be reduced in a more optimized implementation. These values are lower

limits on the total compute time and memory usage of the image-based shift-and-stack,

since we do not find and report detection results in our CPU-only implementation. These

measurements are used to compute the relative CPU-time (speedup) and relative memory

usage between our detection catalog stacking algorithm and an image-based shift-and-stack



112

approach, producing lower and upper limits on these value respectively. Figure 4.10 visu-

alizes the total compute-time speedup and relative memory usage while Fig. 4.11 visualizes

the speedup and relative memory usage when comparing the core-search components of the

catalog and image-based shift-and-stack approach. Examining Fig. 4.11, we find that the

core-search component of our algorithm attains speedups of 10 � 103 across values of �x

from 1� 10 and SNR 1� 5. These results verify the theoretical scaling relations in Eq. 4.8.

Values of the absolute and relative total CPU-time, memory usage, and m50 depth

achieved by our algorithm and the image-based shift-and-stack approach are reported in

Table 4.3. We find that total compute-time speedups range from 3.9 for the SNR � 1

search to 203.3 for the SNR � 5 search, providing speedup over all achievable m50 depths.

Our algorithm uses 10.9⇥ as much memory for the SNR � 1 search and 50⇥ less memory

for the SNR � 5 search, realizing memory savings for most searches except the SNR � 1

search, which has a likely unmanageable memory footprint. Taking the SNR � 2 search

as a comparison point, our algorithm achieves a speedup of 30.8 with 88% of the memory

footprint of an image-based shift-and-stack approach, while sacrificing 0.25 mag in m50

depth.



113

Figure 4.3: The distribution of velocities and magnitudes of the injected synthetic MBAs

and TNOs.



114

Figure 4.4: The number of peaks and pixels in a likelihood image derived from a 2048⇥4096

CCD di↵erence image as a function of the SNR threshold. At all values of SNR, the number

of detection peaks is smaller by factors of 102 � 106.



115

Figure 4.5: A visualization of the sky locations of a stacked detection catalog derived from

a 4 hour sequence of DECam images with a grid of constant ecliptic latitude/longitude

overlaid. Detections at a single epoch represent the on-sky location of a putative source on

a di↵erence image. Detections are accumulated across all 104 epochs and plotted jointly in

this visualization. Moving objects appear as lines in this stacked visualization. Stationary

variable sources as well as di↵erence imaging artifacts appear as clusters and isolated points.



116

Figure 4.6: The fraction of synthetic objects recovered as a function of their magnitude for

the TNO and MBA searches. Dots represent the detection fraction in bins of size 0.5 mag

and error bars represent the asymmetric uncertainty in the estimated fraction using the

Wilson score interval. Two reference magnitudes are visualized as black solid and dashed

vertical lines. The solid black line visualizes the estimated single-epoch m50 = 23.7. The

dashed black line represents the theoretical achievable depth by coadding all of the images

and is equal to m
coadd
50

= 26.2.



117

Figure 4.7: The m50 depth from fitting of the completeness (left), the number of candidate

detections produced per detector (middle), and the number of synthetic objects (fakes)

recovered (right) for the TNO and MBA searches as a function of the Nmin parameter.

The solid black line visualizes the estimated single-epoch m50 = 23.7. The dashed black

line represents the theoretical achievable depth by coadding all of the images and is equal

to m
coadd
50

= 26.2. Decreasing the value of Nmin increases m50 depth and the number of

synthetic objects recovered, at the cost of vastly increasing the number of results produced.

Most of the results produced at low values of Nmin are false-positive candidates.



118

Figure 4.8: The m50 depth achieved for the TNO (blue) and MBA (orange) searches as a

function of the SNR of the input catalog choosing Nmin such that the number of results per

detector is fixed at 200. The solid black line represents a single-epoch SNR ⇠ 5 limiting

magnitude of m50 = 23.7 while the dashed black line represents the theoretical optimal

achievable coadded depth of mcoadd
50

= 26.2. The dotted black line visualizes the expected

scaling of achieved depth with SNR, extrapolated from the single-epoch limiting magnitude.



119

Figure 4.9: The median wall-clock runtime and memory usage of our catalog shift-and-stack

algorithm for the TNO (blue) and MBA (orange) searches across the 60 DECam detectors

searched. Error bars represent the standard deviation of the runtime and memory usage

values measured.



120

Figure 4.10: The left panels visualize the CPU-time and memory usage of our algorithm

as a function of the m50 depth achieved. The black solid line visualizes the single-epoch

m50 = 23.7 while the dashed black line visualizes the theoretical maximum m
coadd
50

= 26.2

that could be achieved through optimal coaddition. The dotted black line visualizes the

m
KBMOD
50

= 25.47 depth achieved in an image-based shift-and-stack approach, utilizing

the KBMOD software. The right panels visualize the relative total CPU-time (speedup) and

memory usage of our algorithm when compared to an image-based shift-and-stack search.



121

Figure 4.11: The CPU-time and memory usage of the core search component of our al-

gorithm as a function of the �x value and the SNR of the catalog searched. The black

solid lines represent theoretical scaling laws with �x. The right panels visualize the relative

core-search CPU-time (speedup) and memory usage when compared to an implementation

of an image-based shift-and-stack search.



122

S
N
R

m
5
0

C
P
U

(m
in
)

M
em

or
y
(G

B
)

S
p
ee
d
u
p

R
el
at
iv
e
M
em

or
y
(G

B
)

�
m

5
0

1
25
.8
7
±
0.
21

39
.5

19
0.
8

�
3.
9


10

.9
2

0.
42

±
0.
21

2
25
.2
1
±
0.
05

5.
0

15
.4

�
30

.8


0.
88

�
0.
25

±
0.
05

3
24
.6
8
±
0.
04

1.
8

1.
4

�
85

.9


0.
08

�
0.
77

±
0.
04

4
24
.2
9
±
0.
05

1.
1

0.
4

�
13

8.
6


0.
02

�
1.
17

±
0.
05

5
23
.9
6
±
0.
06

0.
8

0.
4

�
20

3.
3


0.
02

�
1.
50

±
0.
06

T
ab

le
4.
3:

T
ot
al

co
m
p
u
te
-t
im

e,
m
em

or
y
u
sa
ge
,
an

d
m

5
0
d
ep

th
ac
h
ie
ve
d
w
h
en

se
ar
ch
in
g
fo
r
T
N
O
s.

S
p
ee
d
u
p
,
re
la
ti
ve

m
em

or
y

u
sa
ge
,
an

d
d
i↵
er
en

ce
in

m
5
0
d
ep

th
in

co
m
p
ar
is
on

to
th
e
co
re
-s
ea
rc
h
ro
u
ti
n
e
of

an
im

ag
e-
b
as
ed

sh
if
t-
an

d
-s
ta
ck

ap
p
ro
ac
h
ar
e

p
ro
vi
d
ed

,
u
si
n
g
2.
54

co
re
-h
ou

rs
,
17

.5
G
B

of
m
em

or
y,

an
d
m

5
0
=

25
.4
7
±
0.
01

as
fi
d
u
ci
al

va
lu
es
.



123

4.4 Conclusions

We have presented an e�cient shift-and-stack algorithm capable of finding both bright and

faint moving objects in detection catalogs derived from CCD images. The algorithm finds

objects in both pure and noisy catalogs derived from high- and low-SNR detections. The

algorithm is e�cient in the sense that it reduces the number of stacks performed relative to

an image-based shift-and-stack algorithm.

We have validated the performance of the algorithm by using it to recover synthetic

moving objects implanted in di↵erence images representing the Main Belt Asteroid and

Trans-Neptunian Object populations. The algorithm is found to be computationally e�cient

and e↵ective at recovering faint moving objects below the noise floor of an individual image.

We provide a method to choose the parameters of the algorithm that determine the depth

it can achieve as well as its false positive rate. We show how depth achieved scales with

the number of candidate objects discovered, and the required resource usage to attain a

given depth. We provide a comparison of resource usage and depth obtained between our

method and an image-based shift-and-stack approach. We find that our method can achieve

wall-clock runtime speedups of ⇠ 30⇥ with 88% of the memory usage while sacrificing 0.25

mag in m50 depth.

The algorithm does not reach the theoretical limit expected from ideal coaddition. One

possible reason for this is due to our limited method of results filtering. In this study, we

analyze depth based on the first 1000 candidates produced in a search. Applying a more

sophisticated filtering method on the produced results may allow fainter objects of lower

significance to be found while keeping the number of results manageable. Additionally,

it is possible that this is due to the metric used for accumulating signal: the number of

detections across epochs in an aperture of variable size. A di↵erent metric, perhaps the

detection likelihood could be accumulated instead, mimicking the approach of Whidden

et al. (2019). The likelihood naturally weights signal detections higher than noise detections,

whereas the indicator on detected vs non-detected provides equal weight to these outcomes.

In this scheme, a likelihood ratio test could be used to reason about the relative odds that a

candidate moving object is real or the result of noise detections, following more closely the



124

detection catalog coaddition framework outlined in Budavári et al. (2017), which was able to

clearly distinguish real faint objects from noise detections at very low detection significance.

A benefit of our equal-weighting scheme is that it potentially makes our shift-and-stack

method less sensitive to contamination by di↵erence image artifacts and stationary sources.

Exploring the cost-benefit trade-o↵ of using the likelihood in the stacking procedure is left

for future work.

This algorithm provides a path forward for broad application of shift-and-stack to large

imaging surveys such as the Legacy Survey of Space and Time (LSST; Željko Ivezić et al.

(2019)). It is very computationally challenging to perform complete image-based shift-and-

stack searches on such large surveys, especially for populations of “fast”-moving objects

such as main belt asteroids and near-Earth objects. As demonstrated in this work, it is

possible to probe 0.5 mag deeper into the population of main belt asteroids at relatively

low computational expense by detecting at SNR = 3 and applying this algorithm. This

algorithm will be immediately applicable in finding these objects in near-ecliptic deep drilling

fields of the LSST as well as in the Rubin Observatory’s commissioning survey of these fields.



125

Chapter 5

CONCLUSIONS

This thesis lays the groundwork for how to scale scientific analyses in the era of the Vera

C. Rubin Observatory’s Legacy Survey of Space and Time. In Chapter 2, I showed how

scientific analyses can be scaled to the petabyte-sized detection catalog produced by the

LSST by utilizing tools that partition the dataset into smaller units upon which a user’s

code is executed. In Chapter 3, I showed how the LSST Science Pipelines can be applied to

process the images from the LSST. Additionally, I outlined tools that can be used by users

and groups to perform their own processing campaigns with the LSST Science Pipelines. In

Chapter 4, I introduced improvements to the shift-and-stack algorithm, enabling its broad

application to the LSST imaging dataset and its use in finding faint Main Belt Asteroids

in the survey. It is my hope that these tools and algorithms I have built and shared have

a broad impact by minimizing the technical burden faced by the astronomy community as

we take action toward our shared goal of understanding the universe.



126

BIBLIOGRAPHY

Alard, C., & Lupton, R. H. 1998, , 503, 325, doi: 10.1086/305984

Babuji, Y., Woodard, A., Li, Z., et al. 2019, in 28th ACM International Symposium on

High-Performance Parallel and Distributed Computing (HPDC), doi: 10.1145/3307681.

3325400

Ballard, D. H. 1981, Pattern recognition, 13, 111

Bannister, M. T., Kavelaars, J. J., Petit, J.-M., et al. 2016, , 152, 70, doi: 10.3847/

0004-6256/152/3/70

Batygin, K., & Brown, M. E. 2016, The Astronomical Journal, 151, 22, doi: 10.3847/

0004-6256/151/2/22

Becker, A. 2015, HOTPANTS: High Order Transform of PSF ANd Template Subtraction,

Astrophysics Source Code Library, record ascl:1504.004

Bektesevic, D., Chiang, H.-F., Lim, K.-T., et al. 2020, A Gateway to Astronomical Image

Processing: Vera C. RubinObservatory LSST Science Pipelines on AWS, arXiv, doi: 10.

48550/ARXIV.2011.06044

Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, Publications of the Astronomical

Society of Pacific, 131, 018002, doi: 10.1088/1538-3873/aaecbe

Bernardinelli, P. H., Smotherman, H., Langford, Z., et al. 2024, , 167, 134, doi: 10.3847/

1538-3881/ad1527

Bernardinelli, P. H., Smotherman, H., Langford, Z., et al. 2024, The Astronomical Journal,

167, 134, doi: 10.3847/1538-3881/ad1527

Bernstein, G. M., Trilling, D., Allen, R., et al. 2004, The Astronomical Journal, 128, 1364

http://doi.org/10.1086/305984
http://doi.org/10.1145/3307681.3325400
http://doi.org/10.1145/3307681.3325400
http://doi.org/10.3847/0004-6256/152/3/70
http://doi.org/10.3847/0004-6256/152/3/70
http://doi.org/10.3847/0004-6256/151/2/22
http://doi.org/10.3847/0004-6256/151/2/22
http://doi.org/10.48550/ARXIV.2011.06044
http://doi.org/10.48550/ARXIV.2011.06044
http://doi.org/10.1088/1538-3873/aaecbe
http://doi.org/10.3847/1538-3881/ad1527
http://doi.org/10.3847/1538-3881/ad1527
http://doi.org/10.3847/1538-3881/ad1527


127

Bernstein, G. M., Trilling, D. E., Allen, R. L., et al. 2004a, , 128, 1364, doi: 10.1086/422919

—. 2004b, , 128, 1364, doi: 10.1086/422919

Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, , 70, S5, doi: 10.1093/pasj/psx080

Bosch, J., AlSayyad, Y., Armstrong, R., et al. 2019, in Astronomical Society of the Pacific

Conference Series, Vol. 523, Astronomical Data Analysis Software and Systems XXVII,

ed. P. J. Teuben, M. W. Pound, B. A. Thomas, & E. M. Warner, 521, doi: 10.48550/

arXiv.1812.03248

Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005, , 175, 111, doi: 10.1016/j.icarus.

2004.10.026

Boyajian, T. S., LaCourse, D. M., Rappaport, S. A., et al. 2016, Monthly Notices of the

Royal Astronomical Society, 457, 3988, doi: 10.1093/mnras/stw218

Budavári, T., Szalay, A. S., & Loredo, T. J. 2017, The Astrophysical Journal, 838, 52,

doi: 10.3847/1538-4357/aa6335

Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2019, The Pan-STARRS1 Surveys.

https://arxiv.org/abs/1612.05560

Cheng, Y., Liu, F. C., Jing, S., Xu, W., & Chau, D. H. 2018, in Proceedings of the Practice

and Experience on Advanced Research Computing, PEARC ’18 (New York, NY, USA:

Association for Computing Machinery), doi: 10.1145/3219104.3229288

Dalitz, C., Schramke, T., & Jeltsch, M. 2017, Image Processing On Line, 7, 184

Danieli, S., Kado-Fong, E., Huang, S., et al. 2024, arXiv e-prints, arXiv:2410.01884, doi: 10.

48550/arXiv.2410.01884

Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, , 460, 1270,

doi: 10.1093/mnras/stw641

Deelman, E., Vahi, K., Rynge, M., et al. 2019, Computing in Science Engineering, 21, 22,

doi: 10.1109/MCSE.2019.2919690

http://doi.org/10.1086/422919
http://doi.org/10.1086/422919
http://doi.org/10.1093/pasj/psx080
http://doi.org/10.48550/arXiv.1812.03248
http://doi.org/10.48550/arXiv.1812.03248
http://doi.org/10.1016/j.icarus.2004.10.026
http://doi.org/10.1016/j.icarus.2004.10.026
http://doi.org/10.1093/mnras/stw218
http://doi.org/10.3847/1538-4357/aa6335
https://arxiv.org/abs/1612.05560
http://doi.org/10.1145/3219104.3229288
http://doi.org/10.48550/arXiv.2410.01884
http://doi.org/10.48550/arXiv.2410.01884
http://doi.org/10.1093/mnras/stw641
http://doi.org/10.1109/MCSE.2019.2919690


128

Dekany, R., Smith, R. M., Riddle, R., et al. 2020, , 132, 038001, doi: 10.1088/1538-3873/

ab4ca2

DeMeo, F. E., & Carry, B. 2014, , 505, 629, doi: 10.1038/nature12908

Denneau, L., Jedicke, R., Grav, T., et al. 2013, Publications of the Astronomical Society of

the Pacific, 125, 357, doi: 10.1086/670337

Dubois-Felsmann, G., Lim, K.-T., Wu, X., et al. 2017, LSST Science Platform Design,

Rubin Observatory. http://ls.st/ldm-542

Duda, R. O., & Hart, P. E. 1972, Commun. ACM, 15, 11–15, doi: 10.1145/361237.361242

Duncan, M. J., Levison, H. F., & Budd, S. M. 1995, The Astronomical Journal, 110, 3073,

doi: 10.1086/117748

Fernández, J., & Ip, W.-H. 1984, Icarus, 58, 109, doi: 10.1016/0019-1035(84)90101-5

Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, The Astronomical Journal, 150, 150,

doi: 10.1088/0004-6256/150/5/150

Fraser, W. C., Porter, S. B., Peltier, L., et al. 2024, , 5, 227, doi: 10.3847/PSJ/ad6f9e

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016a, Astronomy and Astro-

physics, 595, A1, doi: 10.1051/0004-6361/201629272

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016b, , 595, A1, doi: 10.1051/

0004-6361/201629272

Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, , 674, A1, doi: 10.1051/

0004-6361/202243940

Gladman, B., Kavelaars, J., Nicholson, P. D., Loredo, T. J., & Burns, J. A. 1998, The

Astronomical Journal, 116, 2042

Graham, M. J., Kulkarni, S. R., Bellm, E. C., et al. 2019, , 131, 078001, doi: 10.1088/

1538-3873/ab006c

http://doi.org/10.1088/1538-3873/ab4ca2
http://doi.org/10.1088/1538-3873/ab4ca2
http://doi.org/10.1038/nature12908
http://doi.org/10.1086/670337
http://ls.st/ldm-542
http://doi.org/10.1145/361237.361242
http://doi.org/10.1086/117748
http://doi.org/10.1016/0019-1035(84)90101-5
http://doi.org/10.1088/0004-6256/150/5/150
http://doi.org/10.3847/PSJ/ad6f9e
http://doi.org/10.1051/0004-6361/201629272
http://doi.org/10.1051/0004-6361/201629272
http://doi.org/10.1051/0004-6361/201629272
http://doi.org/10.1051/0004-6361/202243940
http://doi.org/10.1051/0004-6361/202243940
http://doi.org/10.1088/1538-3873/ab006c
http://doi.org/10.1088/1538-3873/ab006c


129

Hahn, J. M., & Malhotra, R. 2005, The Astronomical Journal, 130, 2392, doi: 10.1086/

452638

Heasley, J. N. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 189,

Precision CCD Photometry, ed. E. R. Craine, D. L. Crawford, & R. A. Tucker, 56

Heinze, A. N., Metchev, S., & Trollo, J. 2015, The Astronomical Journal, 150, 125

Heinze, A. N., Metchev, S., & Trollo, J. 2015a, , 150, 125, doi: 10.1088/0004-6256/150/

4/125

—. 2015b, , 150, 125, doi: 10.1088/0004-6256/150/4/125

Helmi, A. 2020, , 58, 205, doi: 10.1146/annurev-astro-032620-021917

Holman, M. J., Payne, M. J., Blankley, P., Janssen, R., & Kuindersma, S. 2018, , 156, 135,

doi: 10.3847/1538-3881/aad69a

Holman, M. J., & Wisdom, J. 1993, , 105, 1987, doi: 10.1086/116574

Hough, P. V. C. 1959, Conf. Proc. C, 590914, 554

Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, , 873, 111, doi: 10.3847/1538-4357/

ab042c

Jenness, T., Bosch, J. F., Salnikov, A., et al. 2022, in Society of Photo-Optical Instrumen-

tation Engineers (SPIE) Conference Series, Vol. 12189, Software and Cyberinfrastructure

for Astronomy VII, 1218911, doi: 10.1117/12.2629569

Jones, R. L., Gladman, B., Petit, J. M., et al. 2006, , 185, 508, doi: 10.1016/j.icarus.

2006.07.024

Jurić, M., Ciardi, D., & Dubois-Felsmann, G. 2017, LSST Science Platform Vision Docu-

ment, Rubin Observatory. http://ls.st/lse-319

Juric, M., Stetzler, S., & Slater, C. T. 2021, Checkpoint, Restore, and Live Migration for

Science Platforms. https://arxiv.org/abs/2101.05782

http://doi.org/10.1086/452638
http://doi.org/10.1086/452638
http://doi.org/10.1088/0004-6256/150/4/125
http://doi.org/10.1088/0004-6256/150/4/125
http://doi.org/10.1088/0004-6256/150/4/125
http://doi.org/10.1146/annurev-astro-032620-021917
http://doi.org/10.3847/1538-3881/aad69a
http://doi.org/10.1086/116574
http://doi.org/10.3847/1538-4357/ab042c
http://doi.org/10.3847/1538-4357/ab042c
http://doi.org/10.1117/12.2629569
http://doi.org/10.1016/j.icarus.2006.07.024
http://doi.org/10.1016/j.icarus.2006.07.024
http://ls.st/lse-319
https://arxiv.org/abs/2101.05782


130

Kaiser, N., Burgett, W., Chambers, K., et al. 2010, in , Vol. 7733, Ground-based and

Airborne Telescopes III, 77330E, doi: 10.1117/12.859188

Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power in Academic

Publishing: Players, Agents and Agendas, ed. F. Loizides & B. Scmidt (Netherlands: IOS

Press), 87–90. https://eprints.soton.ac.uk/403913/

Kubica, J., Denneau, L., Grav, T., et al. 2007, Icarus, 189, 151, doi: https://doi.org/10.

1016/j.icarus.2007.01.008

Kurlander, J., Bernardinelli, P., Schwamb, M., et al. 2024, in AAS/Division for Plane-

tary Sciences Meeting Abstracts, Vol. 56, AAS/Division for Planetary Sciences Meeting

Abstracts, 212.07

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, , 137, 1782

Levison, H. F., Morbidelli, A., VanLaerhoven, C., Gomes, R., & Tsiganis, K. 2008, Icarus,

196, 258, doi: 10.1016/J.ICARUS.2007.11.035

LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv e-prints,

arXiv:0912.0201, doi: 10.48550/arXiv.0912.0201

Maeno, T., Alekseev, A., Barreiro Megino, F. H., et al. 2024, Computing and Software for

Big Science, 8, doi: 10.1007/s41781-024-00114-3

Malhotra, R. 1993, Nature, 365, 819, doi: 10.1038/365819a0

Masci, F. J., Laher, R. R., Rusholme, B., et al. 2019, , 131, 018003, doi: 10.1088/

1538-3873/aae8ac

Millis, R. L., Buie, M. W., Wasserman, L. H., et al. 2002, , 123, 2083, doi: 10.1086/339481

Moeyens, J., Jurić, M., Ford, J., et al. 2021, The Astronomical Journal, 162, 143, doi: 10.

3847/1538-3881/ac042b

Morbidelli, A. 2010, Comptes Rendus Physique, 11, 651, doi: 10.1016/j.crhy.2010.11.

001

http://doi.org/10.1117/12.859188
https://eprints.soton.ac.uk/403913/
http://doi.org/https://doi.org/10.1016/j.icarus.2007.01.008
http://doi.org/https://doi.org/10.1016/j.icarus.2007.01.008
http://doi.org/10.1016/J.ICARUS.2007.11.035
http://doi.org/10.48550/arXiv.0912.0201
http://doi.org/10.1007/s41781-024-00114-3
http://doi.org/10.1038/365819a0
http://doi.org/10.1088/1538-3873/aae8ac
http://doi.org/10.1088/1538-3873/aae8ac
http://doi.org/10.1086/339481
http://doi.org/10.3847/1538-3881/ac042b
http://doi.org/10.3847/1538-3881/ac042b
http://doi.org/10.1016/j.crhy.2010.11.001
http://doi.org/10.1016/j.crhy.2010.11.001


131

Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. 2010, , 140, 1391,

doi: 10.1088/0004-6256/140/5/1391

Morganson, E., Gruendl, R. A., Menanteau, F., et al. 2018, , 130, 074501, doi: 10.1088/

1538-3873/aab4ef

Napier, K. J., Lin, H. W., Gerdes, D. W., et al. 2024, , 5, 50, doi: 10.3847/PSJ/ad1528

Nesvorný, D., & Vokrouhlický, D. 2016, The Astrophysical Journal, 825, 94, doi: 10.3847/

0004-637X/825/2/94

Nesvorný, D. 2011, The Astrophysical Journal Letters, 742, L22, doi: 10.1088/2041-8205/

742/2/L22

Nguyen, T., Woods, D. F., Ruprecht, J., & Birge, J. 2024, The Astronomical Journal, 167,

113, doi: 10.3847/1538-3881/ad20e0

Norman, M., Kellen, V., Smallen, S., et al. 2021, in Practice and Experience in Advanced

Research Computing, PEARC ’21 (New York, NY, USA: Association for Computing

Machinery), doi: 10.1145/3437359.3465586

O’Mullane, W., Economou, F., Huang, F., et al. 2021, arXiv e-prints, doi: 10.48550/ARXIV.

2111.15030

Patterson, M. T., Bellm, E. C., Rusholme, B., et al. 2018, Publications of the Astronomical

Society of the Pacific, 131, 018001, doi: 10.1088/1538-3873/aae904

Peloton, J., Arnault, C., & Plaszczynski, S. 2018, FITS Data Source for Apache Spark,

arXiv, doi: 10.48550/ARXIV.1804.07501

Percival, W. J., Nichol, R. C., Eisenstein, D. J., et al. 2007, The Astrophysical Journal,

657, 51, doi: 10.1086/510772

Peter J Rousseeuw, Stefan Van Aelst, K. V. D., & Gulló, J. A. 2004, Technometrics, 46,

293, doi: 10.1198/004017004000000329

http://doi.org/10.1088/0004-6256/140/5/1391
http://doi.org/10.1088/1538-3873/aab4ef
http://doi.org/10.1088/1538-3873/aab4ef
http://doi.org/10.3847/PSJ/ad1528
http://doi.org/10.3847/0004-637X/825/2/94
http://doi.org/10.3847/0004-637X/825/2/94
http://doi.org/10.1088/2041-8205/742/2/L22
http://doi.org/10.1088/2041-8205/742/2/L22
http://doi.org/10.3847/1538-3881/ad20e0
http://doi.org/10.1145/3437359.3465586
http://doi.org/10.48550/ARXIV.2111.15030
http://doi.org/10.48550/ARXIV.2111.15030
http://doi.org/10.1088/1538-3873/aae904
http://doi.org/10.48550/ARXIV.1804.07501
http://doi.org/10.1086/510772
http://doi.org/10.1198/004017004000000329


132

Portillo, S. K. N., Speagle, J. S., & Finkbeiner, D. P. 2020, The Astronomical Journal, 159,

165, doi: 10.3847/1538-3881/ab76ba

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, , 116, 1009, doi: 10.1086/300499

Rousseeuw, P. 1985, Mathematical Statistics and Applications Vol. B, 283, doi: 10.1007/

978-94-009-5438-0_20

Rousseeuw, P. J., & Driessen, K. V. 1999, Technometrics, 41, 212, doi: 10.1080/00401706.

1999.10485670

Scaramella, R., Mellier, Y., Amiaux, J., et al. 2014, in IAU Symposium, Vol. 306, Statistical

Challenges in 21st Century Cosmology, ed. A. Heavens, J.-L. Starck, & A. Krone-Martins,

375–378, doi: 10.1017/S1743921314011089

Schwamb, M. E., Brown, M. E., Rabinowitz, D. L., & Ragozzine, D. 2010, , 720, 1691,

doi: 10.1088/0004-637X/720/2/1691

Shao, M., Nemati, B., Zhai, C., et al. 2014a, , 782, 1, doi: 10.1088/0004-637X/782/1/1

—. 2014b, , 782, 1, doi: 10.1088/0004-637X/782/1/1

Shappee, B., Prieto, J., Stanek, K. Z., et al. 2014, in American Astronomical Society Meeting

Abstracts, Vol. 223, American Astronomical Society Meeting Abstracts #223, 236.03

Smotherman, H., Connolly, A. J., Kalmbach, J. B., et al. 2021, The Astronomical Journal,

162, 245, doi: 10.3847/1538-3881/ac22ff

Smotherman, H., Bernardinelli, P. H., Portillo, S. K. N., et al. 2024, , 167, 136, doi: 10.

3847/1538-3881/ad1524

Spergel, D., Gehrels, N., Baltay, C., et al. 2015, arXiv e-prints, arXiv:1503.03757. https:

//arxiv.org/abs/1503.03757

Strauss, R., Trilling, D. E., Bernardinelli, P. H., et al. 2024a, , 167, 135, doi: 10.3847/

1538-3881/ad1526

http://doi.org/10.3847/1538-3881/ab76ba
http://doi.org/10.1086/300499
http://doi.org/10.1007/978-94-009-5438-0_20
http://doi.org/10.1007/978-94-009-5438-0_20
http://doi.org/10.1080/00401706.1999.10485670
http://doi.org/10.1080/00401706.1999.10485670
http://doi.org/10.1017/S1743921314011089
http://doi.org/10.1088/0004-637X/720/2/1691
http://doi.org/10.1088/0004-637X/782/1/1
http://doi.org/10.1088/0004-637X/782/1/1
http://doi.org/10.3847/1538-3881/ac22ff
http://doi.org/10.3847/1538-3881/ad1524
http://doi.org/10.3847/1538-3881/ad1524
https://arxiv.org/abs/1503.03757
https://arxiv.org/abs/1503.03757
http://doi.org/10.3847/1538-3881/ad1526
http://doi.org/10.3847/1538-3881/ad1526


133

Strauss, R., McNeill, A., Trilling, D. E., et al. 2024b, , 168, 184, doi: 10.3847/1538-3881/

ad7366

Thain, D., Tannenbaum, T., & Livny, M. 2005, Concurrency - Practice and Experience, 17,

323

Tonry, J. L., Denneau, L., Heinze, A. N., et al. 2018, Publications of the Astronomical

Society of Pacific, 130, 064505, doi: 10.1088/1538-3873/aabadf

Trilling, D. E., Gerdes, D. W., Jurić, M., et al. 2024, , 167, 132, doi: 10.3847/1538-3881/

ad1529

Trilling, D. E., Gerdes, D. W., Jurić, M., et al. 2024, The Astronomical Journal, 167, 132,

doi: 10.3847/1538-3881/ad1529

Trujillo, C. A., Jewitt, D. C., & Luu, J. X. 2001, , 122, 457, doi: 10.1086/321117

Trujillo, C. A., Fuentes, C., Gerdes, D. W., et al. 2024, , 167, 133, doi: 10.3847/1538-3881/

ad1523

Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435, 459, doi: 10.

1038/nature03539

Wang, D. L., Monkewitz, S. M., Lim, K.-T., & Becla, J. 2011, in SC ’11: Proceedings

of 2011 International Conference for High Performance Computing, Networking, Storage

and Analysis, 1–11, doi: 10.1145/2063348.2063364

Whidden, P. J., Kalmbach, J. B., Connolly, A. J., et al. 2019, The Astronomical Journal,

157, 119, doi: 10.3847/1538-3881/aafd2d

Zackay, B., & Ofek, E. O. 2017, The Astrophysical Journal, 836, 188, doi: 10.3847/

1538-4357/836/2/188

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. 2010, in Proceedings

of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10 (USA:

USENIX Association), 10. https://dl.acm.org/doi/10.5555/1863103.1863113

http://doi.org/10.3847/1538-3881/ad7366
http://doi.org/10.3847/1538-3881/ad7366
http://doi.org/10.1088/1538-3873/aabadf
http://doi.org/10.3847/1538-3881/ad1529
http://doi.org/10.3847/1538-3881/ad1529
http://doi.org/10.3847/1538-3881/ad1529
http://doi.org/10.1086/321117
http://doi.org/10.3847/1538-3881/ad1523
http://doi.org/10.3847/1538-3881/ad1523
http://doi.org/10.1038/nature03539
http://doi.org/10.1038/nature03539
http://doi.org/10.1145/2063348.2063364
http://doi.org/10.3847/1538-3881/aafd2d
http://doi.org/10.3847/1538-4357/836/2/188
http://doi.org/10.3847/1538-4357/836/2/188
https://dl.acm.org/doi/10.5555/1863103.1863113


134

Zečević, P., Slater, C. T., Jurić, M., et al. 2019, Astronomical Journal, 158, 37, doi: 10.

3847/1538-3881/ab2384

Željko Ivezić, Kahn, S. M., Tyson, J. A., et al. 2019, The Astrophysical Journal, 873, 111,

doi: 10.3847/1538-4357/ab042c

http://doi.org/10.3847/1538-3881/ab2384
http://doi.org/10.3847/1538-3881/ab2384
http://doi.org/10.3847/1538-4357/ab042c

	List of Figures
	List of Tables
	Introduction
	The Big Data Problem
	Speeding Up Code
	Finding Faint Solar System Objects: A Computational Challenge
	Realizing the Potential of LSST

	Enabling Access to Scalable Computing in the Cloud
	Introduction
	A Platform for User-Friendly Scalable Analysis of Large Astronomical Datasets
	A Deployment for ZTF Analyses
	Scalability, Reliability, Costs, and User Experience
	Conclusions

	A Large Image Processing Campaign For Discovery of Trans-Neptunian Objects
	Introduction
	Survey Overview
	Image Processing with the LSST Science Pipelines
	Optimizing Sky Templates for Slow Moving Object Recovery
	Processing Campaign
	Conclusion

	An Efficient Shift-and-Stack Algorithm Applied to Detection Catalogs
	Introduction
	Efficient And Exhaustive Stacking of Detection Catalogs
	Application
	Conclusions

	Conclusions

