
Scalable Gaussian Process Regression for Massive
Astronomy Data Sets

Steven Stetzler
Department of Astronomy
University of Washington

Seattle, WA 98195
stevengs@uw.edu

Abstract

I present background work and my own initial results in investigating applying
scalable Gaussian Process (GP) regression to astronomy data sets. I focus on
comparing fast approximate GP solvers with exact solvers in the context of hy-
perparameter learning. We find that approximate solvers that utilize conjugate
gradients for fast matrix inverses are not suitable for hyperparameter learning. We
perform initial work trying to integrate kernel learning utilizing exact solvers with
the scalability of approximate methods.

1 Introduction

Gaussian Process (GP) regression has shown great promise in astronomical applications e.g. for
modelling of stellar variability (how the brightness of stars change over time) [1], exoplanet transits
(the dip in brightness of a far away star due to a planet passing in front of it) [2], and multi-band
supernovae observations (how the brightness of a supernovae rises and decays on short timescales
in multiple wavelengths) [3]. GPs have also proven to be powerful, flexible, and interpretable
function approximators in many machine learning settings where physical parameter inference is
not as important as learning an arbitrary target distribution. The main challenge of using a GP is its
scalability as exact inference with a GP requires inverting and computing the determinant of a n× n
matrix. These operations require O(n3) computations, which is intractable for a single machine
when n > 103−4. Future astronomical surveys expect to produce massive data sets with ∼ 109

individual objects, that will each produce a data stream of 103−5 observations with d ≥ 1. Since
we expect to be measuring many more individual objects than there are observations for each object
(109 >> 103−5), then the speedup possible through the use of distributed computing will be more
significant if we distribute computations over the objects as a group instead of over the GP inferences
of each object. Thus, we cannot expect to take advantage of distributed computing methods to speed
up GP inference, and the only path forward is to improve the scalability of the GP inference itself. In
this report, I review prior work to improve the scalability of GP inference and apply those methods to
astronomical data sets in the context of kernel learning. In §2 I provide the mathematical background
necessary to understand Gaussian Process regression. In §3, I outline the prior applicable work on
improving GP scalability, in §4 I outline our data and models, and in §5 I provide preliminary results
in applying these methods to astronomical data sets and outline my further work.

2 Mathematical Background

Gaussian Process regression is one approach to modeling data with the form

Y = f(X) + ε

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

whereX is an input, Y is an output and ε is Gaussian random noise, which in the case of astronomical
data sets takes the form of observational noise σ2. A Gaussian Process can be thought of as a
probability distribution over function values f(X) which is updated based on data observed. In fact,
the GP specifies that for any collection of data points x = {xi}1≤i≤n, the collection of function
values f = {f(xi)}1≤i≤n will be jointly Gaussian given some mean function µ and covariance matrix
K = [k(xi, xj)]1≤i,j≤n specified by a kernel function over pairs of points k(xi, xj):

f(x) ∼ N (µ(x),K) f(x1)
...

f(xn)

 ∼ N

 µ(x1)

...
µ(x2)

 ,

 k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

Frequently, the mean function is taken to be zero: µ(X) = 0. (We can always demean the data,
and frequently subtract obvious trends e.g. linear ones before performing regression.). A common
choice for the kernel function is the RBF kernel (or squared exponential kernel): k(xi, xj) =

exp
(
− ||xi−xj ||2

2σ2

)
, although we will discuss the use of other kernels that can be used to model

physical processes that astronomers are interested in.

The above equation represents a prior over functions, and does not yet incorporate training data.
Given a location of a test point xi, the above gives us a way to construct an f(xi) as a sample from a
multivariate normal distribution. Rasmussen & Williams (2006) [4] derive the expressions for the
posterior distribution that represents the distribution from which function values can be drawn once
the GP has been conditioned on observed training data points X with corresponding targets y and
noise measurements σn. For a new set of test points X∗:

f∗|X, y,X∗ ∼ N
(̄
f∗, cov(f∗)

)
f̄∗ = K(X∗,X)[K(X,X) + σ2

nIn]−1y
cov(̄f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2

nIn]−1K(X,X∗).
Here, In represents the n× n identity matrix. Whereas before we may have specified that our mean
function be µ(X) = 0, we see now that once we have seen the training data X, the new mean function
for the multivariate normal from which predictions are drawn is f̄∗ and the covariance matrix of the
multivariate normal has changed as well. This process of updating the mean function and covariance
matrix is how the GP learns from the training data X, y to predict (a distribution of) values y∗ for new
test data X∗.

The above formalism gives one a way to make test predictions given observed data. However,
using this formalism requires a choice of kernel function over pairs of points k(xi, xj), which
frequently depends on one or more hyperparameters. For the RBF kernel, the “lengthscale” σ2 is a
hyperparameter that should be chosen to best fit the training data (possibly best fitting a validation
set as well). In astronomy, there are physical models that produce kernels, and the parameters of
physical systems (for example, the rotation period of a star) are represented as hyperparameters of
the GP model. To perform hyperparameter optimization, and thus to perform parameter inference in
astronomy applications, one usually aims to minimize the log marginal likelihood of the observations.
Again from [4], we find this expression is

logL(θ) = log p(y|X, θ)

= −1

2
(y− µ(X))

T (Kθ + σ2
nIn
)−1

(y− µ(X))− log |Kθ + σ2
nIn| −

n

2
log 2π.

where θ are our set of hyperparameters, and the subscript Kθ signifies that these hyperparameters are
specifying the covariance. The negative log marginal likelihood − logL represents a loss function
that we can pass to any optimization routine to minimize over hyperparameters θ and thus find the
best fitting parameters of our model.

In performing both prediction (computing f̄∗) and loss minimization (computing logL), we must
perform a matrix inversion, (K − σ2

nIn)−1, and compute a determinant, |K − σ2
nIn|, of an n × n

matrix. These operations typically require O(n3) operations and O(n2) storage, which is where
the computational bottleneck of using GPs comes into play. This bottleneck is especially relevant
when performing hyperparameter optimization, as the determinant and inversion must be performed
once per evaluation of the log marginal likelihood, which usually happens once per iteration of an
optimization routine.

2

3 Previous Work

A lot of work has been put into overcoming the computational bottleneck of matrix inversion and
determinant computation. In this section, I summarize previous work on this topic that is relevant to
the work I will be performing.

3.1 Structured Kernel Interpolation: KISS-GP

Wilson et al. (2015) [5] introduced a new framework for performing approximate GP inference
in linear time, which they call Kernel Interpolation for Scalable Structured Gaussian Processes
(KISS-GP). The authors build upon previous methods of using inducing points (or interpolating
points) to approximate the kernel K. For a kernel learned on n data points X, the kernel KX,X can be
approximated using m ≤ n inducing points U:

KX,X ≈ KX,UK−1U,UKU,X

where KX,U, KU,U KU,X are n×m, m×m, m× n respectively. This speeds up computations of the
inverse of KX,X to O(m2n+m3) computations. These methods work great as long as the inducing
points are chosen well to approximate the covariance matrix accurately, and computing these inverses
will be tractable as long as the number of inducing points remains small: m << n. The authors build
upon this and provide substantial speed up by noticing that the matrix KX,U can be approximated by
interpolating points from KU,U. For example, if the inducing points are assumed to lie on a grid, then
the kernel evaluation between data point xi and inducing point uj can be written as

k(xi, uj) ≈ wik(ua, uj) + (1− wi)k(ub, uj)

where ua and ub are the two inducing points that most closely bound xi from above and below:
ua ≤ xi ≤ ub (i.e. xi lies between ua and ub), and wi is an interpolation weight. Here we assume
a linear interpolation, but more complex interpolations can be used. Thus the matrix KX,U can be
written as

KX,U ≈WKU,U

where W is an extremely sparse matrix of interpolation weights. Here we assumed a linear interpola-
tion, and thus for each data point xi there exist only two interpolation weights and thus two non-zero
entries per row of W. We can use more complex interpolation schemes at the cost of sparsity of W.
In a complementary manner, KU,X = KU,UWT , giving us the approximation for KX,X of:

KX,X ≈ KX,UK−1U,UKU,X

≈WKU,UK−1X,UKU,UWT

= WKU,UWT

Inverses of KX,X can be computed efficiently through the use of linear conjugate gradients and matrix
matrix-vector products, which come at a cost of O(n + m2) computations. Computation of these
inverses converges quickly, or at least with many fewer iterations than n.

Further speed up comes from a specific choice of the inducing points U. If the inducing points are
constrained to lie on a grid, then we can take advantage of Toeplitz structure (where the diagonal of a
matrix is constant) of KU,U to compute matrix-vector products in O(n+m logm) computations and
O(n+m) storage. In d > 1 dimensions, Kronecker structure of KU,U can be used to compute matrix-
vector products in O(dm1+1/d) computations with O(n+ dm2/d) storage. Kronecker structure can
be formed when the kernel factorizes over the dimensions of the data: k(xi, xj) =

∏d
p=1 k(xpi , x

p
j),

which allows one to write the covariance matrix as a Kronecker product over dimensions:

K = K1 ⊗ ...⊗Kd

These speedups are linear in n and almost linear in m. This allows us to perform almost exact
inference by setting m ∼ n. This speed up comes from the grid structure of the inducing points, and
for data that already lie on a regularly spaced grid (e.g. image data), no inducing points are needed to
obtain this speedup. However, for almost all astronomy applications data will never lie on a uniform
grid naturally, and this inducing point method is required to obtain these speedups.

3

The GPyTorch1 Python package implements regression with the KISS-GP framework, and acts as a
general environment within which to perform GP inference. I use this package to perform inference
within the KISS-GP framework.

3.2 GPyTorch: Efficient Gaussian Processes

GPyTorch[6] is a Python package that accelerates Gaussian Process regression and classification by
utilizing parallel hardware and linear conjugate gradients. Linear conjugate gradients2 attempt to
solve systems of equations of the form

Ax = b

by using the fact that the deviation from the optimal solution, Ax − b, is also the gradient of the
quadratic function

f(x) =
1

2
xTAx− xTb.

This allows for the optimal solution x∗ to be found in an iterative manner by minimizing f(x). One
important quantity computed in this iterative method is the residual rk = b − Axk where k is the
iteration number. If this vector does not converge to 0 after many iterations, that means that the
conjugate gradient method is not converging.

GPyTorch uses preconditioning of the matrix A to help the iterative method converge. Precondition-
ing methods find solutions to the equation

P−1Ax = P−1b

which for some choices of the preconditioner, P, drastically speeds up this iterative method. GPyTorch
specifically uses the Pivoted Cholesky Decomposition of the covariance matrix with an added noise
term as the preconditioner:

P = (Pk + σ2I) (1)

where Pk is the rank k pivoted Cholesky decomposition of the covariance matrix KX,X ≈ Pk and
σ2 is the modelled noise term of our observations. In our results, we evaluate the ability of linear
conjugate gradient methods to converge when σ2 is both fixed (not a model parameter) and small.

4 Data and Model

The dataset we are concerned with in this work is the stellar flux of the star KIC 14301633, a star
with noticeable variability in its brightness due to stellar rotation. In total, this star has n = 51505
observations for it, shown in Fig. 1. Astronomers are interested in inferring the period of the star’s
rotation, which can be inferred directly from the variability in the data. In order to model this
variability, we use the semi-periodic kernel

kperiodic(x1, x2) = A exp

(
−1

2
||x1 − x2||22/l2R + 2

sin2 (π||x1 − x2||2/P)

l2P

)
(2)

which is a scaled combination of an RBF kernel and a periodic kernel. Here, A is a scaling constant,
referred to as “Constant” throughout, lR is the lengthscale associated with the RBF kernel (“RBF
Lengthscale” throughout), P is the period (“Period”), and lP is the lengthscale of the periodicity
(“Periodic Lengthscale” throughout).

We are interested in performing a hyperparameter optimization to find the value of P that best fits the
data, usually marginalizing over choices for other parameters. (See e.g. [7] for a similar approach
using this same data.) However, with 51505 data points, exact GP solvers will struggle to fit the data
in a reasonable amount of time. In the following section, we explore methods used to speed up this
process and expose flaws in the process of using these approximate methods for hyperparameter
learning.

1https://github.com/cornellius-gp/gpytorch
2See https://en.wikipedia.org/wiki/Conjugate_gradient_method
3Extracted from the Kepler data set: https://archive.stsci.edu/kepler/

4

https://github.com/cornellius-gp/gpytorch
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://archive.stsci.edu/kepler/

Figure 1: Observation of the star KIC 1430163

5 Results

Expanding the work from [5] (§3.1) to astronomy related data sets has one large hurdle: this method
provides an approximation of the posterior distribution. In scientific applications, it is frequently
the case that computational resources will be sacrificed as long as an exact result can be obtained.
However, this trend may not continue as astronomy data sets become larger. It is then necessary to
show that approximate methods are sufficient for parameter estimation on a data set.

My initial goal was the perform a thorough investigation of how the Structured Kernel Interpolation
(SKI) method performs in the parameter inference regime. Specifically, I was hoping to perform a
fully Bayesian estimation of the marginal posterior distribution of periods that best fit the data by
using a Markov chain Monte Carlo (MCMC) routine. This would give me both an estimate of the
inferred period and a measure of the uncertainty of that period. I would then tweak the SKI method
to make it more or less approximate and see how the inferred period changes. This would provide
a definitive answer as to whether we can trust the SKI approximate to produce near exact results.
However, I quickly ran into issues that made this compelling path impossible.

First, I noticed that the SKI method as implemented in GPyTorch did not provide a converging fit to
the data in a consistent manner when varying the hyperparameters of the model. What this means
is that parameter inference through kernel learning would be essentially impossible, as we could
not get an accurate measure of the log-likelihood for some values of the hyperparameters. Next, I
backed away from using the SKI method to using an exact kernel in GPyTorch. I found the exact
same behavior of the fit not converging for some values of the hyperparameters. I then pivoted my
project to thoroughly understanding these inconsistencies instead of focusing on producing a final
estimate of the ability of SKI to provide accurate parameter inferences. In the following sections, I
outline this procedure. Unless otherwise stated, the semi-periodic kernel (Eqn. 2) was used as our
base model. For exact inferences, we only fit the model to the first 1000 points of the time series, as
fitting many more would prove infeasible for exact GP solvers.

5

5.1 Kernel Learning with Exact Kernel and Exact Solver

Since we are interested in learning the hyperparameters of our model, I first set out to produce a
plot of the loss surface of our model under the data we are considering (the first 1000 points of the
time series). Shown in Fig. 2 are contour plots produced by randomly and uniformly sampling 104

points over fixed bounds in our four dimensional parameter space and evaluating the log-likelihood
of a model fit to our data using the semi-periodic kernel. GPyTorch produces inconsistent behavior
(due to bugs in the code) when turning off settings that accelerate the GP fit. Because of this, I
performed experiments that utilize an exact solver (no conjugate gradients) using the Gaussian
Process Regression implementation in the sklearn package. This map of our parameter space serves
as a baseline for evaluating the inconsistencies that occur when fitting using conjugate gradients and
the SKI method. We see from this map that the loss function is relatively well behaved. We take
the parameters with maximum likelihood from these tests as our “ground truth” for the best fitting
parameters which we use extensively later

Constant RBF Lengthscale Periodic Lengthscale Period Log-Likelihood
Value 0.03 2.34 0.84 3.54 0.91

Table 1: The best fitting parameters from a hyperparameter search using an exact GP solver on the
first 1000 data points of the time series.

Figure 2: The loss surface of the semi-periodic kernel plotted using pairwise combinations of the
hyperparameters. Color indicates value of the log-likelihood (higher is better) and black lines indicate
the point where the maximum likelihood occurred.

5.2 Kernel Learning with Exact Kernel: Linear Conjugate Gradients

Linear conjugate gradients provide a way to find an approximate solution to a linear system. An
iterative process can be used to find the approximate solution using just a few iterations, which
usually makes these methods much faster than computing exact matrix inverses. GPyTorch uses
these gradients extensively to speed-up computation, even for exact kernels. Here we evaluate at
which values of the hyperparameters these gradients converge. Figure 3 shows the loss surface of

6

our model under the data along with the locations of tested points in the parameter space. At each
point, I tested for convergence of the conjugate gradients by evaluating the residual norm produced
by the iterative conjugate gradient method. If conjugate gradients always converged and produced
solutions close to exact values, we would expect that Fig. 3 and Fig. 2 would be identical. That is, the
loss surfaces would look the same as the inverses and log determinants of the kernel matrices would
be identical in both cases. However, we notice that for almost all of the hyperparameters tested, the
linear conjugate gradients did not converge. And even in regions where they did converge, the loss
surface does not resemble the one produced through an exact solver. This is very worrisome as this
means that for arbitrary combinations of the hyperparameters, even in regions close to the parameters
that supposedly maximize the likelihood of the model, these conjugate gradients cannot converge and
their results should not be trusted.

Figure 3: The log-likelihood evaluated over 103 randomly and uniformly chosen points in our
parameter space using an exact kernel with acceleration from the use of conjugate gradients. Color
of the contour indicates the value of the log-likelihood. Purple points indicate where the GP solver
was able to converge using conjugate gradients, and orange points indicate where the solver did not
converge. We observe that the majority of chosen points did not allow for the model to converge on a
fit.

5.3 Fixed Noise as a Potential Source of Diverging Gradients

By inspecting Eqn. 1, we can see that the preconditioner used by GPyTorch to fit the Gaussian
Process quickly includes a noise term. In contrast to many other settings, we are using a fixed noise
model as our data have inherent observational noise that has already been characterized and estimated.
Thus, no further modeling of the noise is required. For our dataset, this fixed noise is quite low,
∼ 0.018, and this led to a hunch that the preconditioner being used might not be a good enough
preconditioner when the noise is small. To test this, we varied the amount of noise in the data from
the base level of σ2 ∼ 0.018 to 10 × σ2 and 20 × σ2. Shown in Fig.4 is the posterior mean that
the GPyTorch fit converged to at these three noise levels. In these three cases, we use an arbitrary
set of hyperparameters for our model, not the maximum likelihood parameters. We see that for the
base noise level and the 10 × σ2 noise level, the fit has obviously not converged. Only when we
increase the noise level to 20× σ2 does the model actually converge to a reasonable answer under
these hyperparameters, however the fit is not as good as one might expect since the modeled noise is

7

high and so larger deviations from the mean are tolerated. Some may point out that this behavior
is due to the set of hyperparameters chosen being inconsistent with the noise level i.e. no posterior
exists that can fit the data. To investigate this, we tested the exact solver from sklearn with the same
choice of hyperparameters and fixed noise levels and found that a reasonable posterior mean could be
produced in each case. This means that it is likely that the small noise level is interfering with the
preconditioning of the conjugate gradients.

Finally, for the 20× σ2 noise level, we again perform a hyperparameter search to evaluate the loss
function, shown in Fig. 5. We see that by increasing the noise level, we’ve increased the chance that
the conjugate gradient method converges for an arbitrary choice of hyperparameters. However, there
are still points where convergence is impossible, proving kernel learning to be intractable on this data
set with linear conjugate gradient methods.

Figure 4: The posterior mean produced by a fit to the data using the linear conjugate gradient method
at a noise level σ2 ∼ 0.018 (left), 10× σ2 (middle), and 20× σ2 (right). We can see that the only
reasonable posterior mean is produced for noise much higher than actually exists in our data.

5.4 Extending Exact Solutions Over Large Data

While the previous experiments showed that inferring the best fitting hyperparameters is simply
intractable on our dataset, thus ruling out the use of the SKI method to infer the best fitting parameters,
we can still try to evaluate the accuracy of the SKI method when expanded over larger data. We
performed an experiment where we used the best fitting hyperparameters from the exact GP solver
over the first 1000 data points in the time series and extrapolated out the solve over larger portions of
the dataset using the SKI method. We then compare the posterior mean produced from each of these
fits on the first 1000 data points with the posterior mean produced by the exact solver, as shown in
Fig. 6. Figure 6 shows that as we expand the dataset fed to the SKI method past the first 1000 points,
the posterior mean of the SKI model remains relatively constant. Over the first 1000 data points, the
sum squared error between the exact solver’s predicted mean and the SKI method’s predicted mean
stays below the 10−1 level. These results are promising. They tell us that even if we can’t perform
kernel learning with SKI, and even if we can’t scale our exact method to large data, there is still hope
that we can merge these two methods by performing kernel learning on a subset of the data with
an exact solver and using the SKI method to scale that solution to a larger data set and make future
predictions.

We also explored how the accuracy of the SKI method fares as its “approximation knob”, the number
of inducing points used to approximate the covariance matrix, is tuned to make the approximation
better or worse. Figure 7 shows the difference between the SKI method’s predictive posterior mean
and the mean produced by an exact solver. Both models use the best fitting hyperparameters and are
fit over the first 1000 data points alone. We can see that the mean prediction only starts to deviate
when we use fewer than m = 0.1× n inducing points where n = 1000 is the number of data points.
This means that the SKI method is a robust approximator over a large range of number of inducing
point and that having as many as or more inducing points than data points is not necessary in order to
produce near-exact results.

8

Figure 5: The log-likelihood evaluated over 103 randomly and uniformly chosen points in our
parameter space using a fixed noise level of 20× σ2. Color of the contour indicates the value of the
log-likelihood. Purple points indicate where the GP solver was able to converge using conjugate
gradients, and orange points indicate where the solver did not converge.

Figure 6: The left plot shows the deviation from the exact solver’s predictive posterior mean over the
first 1000 data points of the SKI method when trained on many more data points. The SKI method
produces a predictive mean close to that of the exact solver, except in one case (middle) which is still
not understood. The right plot shows the sum squared error between the two means as a function of
the number of data points used to fit the SKI method.

5.5 Runtime Analysis of SKI

Finally, we perform a run time analysis of the SKI method to confirm its promise of a fast solve.
Figure 8 shows the wall clock runtime of both the fit of the GP model to the data (required for
prediction), and the evaluation of the log likelihood (required for kernel learning). All experiments
were performed using a single computer with 2× AMD EPYC 7401 CPUs (48 cores) and 1 TB of
RAM. GPyTorch was allowed to use as many resources as required and did not saturate the machine.
We see that the posterior fitting time scales as expected at O(n+m2) = O(n2) for m = n, where

9

Figure 7: The left plot shows the deviation from the exact solver’s predictive posterior mean over the
first 1000 data points of the SKI method when the number of inducing points is changed. The middle
plot shows the behavior of the predictive mean produced by SKI when the number of inducing points
is much smaller than the number of data points. The right plot shows the sum squared error between
the means, and indicates that acceptable SSE is obtained for m ≥ 0.1n.

in these experiments we use as many inducing points as data points. This is the recovered scaling
from matrix-vector products when using linear conjugate gradients. Evaluations of the log-likelihood
recover a linear scaling O(n), which is a tractable result for kernel learning, as promised by the SKI
method.

Figure 8: The wall clock runtime of producing a fit to the training data (left) and evaluation of the
log-likelihood (right). Both of these results recover the expected scaling. The deviation in the run
time for the experiments with two largest number of training points is not understood.

6 Conclusions

We set out to compare the performance of exact GP solvers and the Structured Kernel Interpolation
method for providing an approximate solves in the context of kernel learning, where we are interested
in finding hyperparamters that are the best fit to our training data. We found that limiting the size
of fixed noise in our data makes kernel learning intractable on our dataset with SKI methods, as the
preconditioning of the linear conjugate gradients used for approximate solves is not robust to small
noise terms. In essence, for an arbitrary choice of hyperparameters, the SKI method is not guaranteed
to produce a converging fit whereas the exact solver is. We attempted to merge kernel learning with
an exact solver and approximate posterior inference with the SKI method in order to redeem the SKI
method in the kernel learning context. We found that our method produced tolerable errors, indicating
that this may be a promising method to merge exact and approximate solvers. Finally, we performed
tests to examine the runtime scaling of SKI methods and recovered the promised O(n2) complexity
for GP fitting and O(n) complexity for evaluation of the log-likelihood.

10

References
[1] Ruth Angus, Timothy Morton, Suzanne Aigrain, Daniel Foreman-Mackey, and Vinesh Rajpaul.

Inferring probabilistic stellar rotation periods using Gaussian processes. Monthly Notices of the
Royal Astronomical Society, 474(2):2094–2108, 09 2017.

[2] N. P. Gibson, S. Aigrain, S. Roberts, T. M. Evans, M. Osborne, and F. Pont. A Gaussian process
framework for modelling instrumental systematics: application to transmission spectroscopy.
Monthly Notices of the Royal Astronomical Society, 419(3):2683–2694, 01 2012.

[3] A. G. Kim, R. C. Thomas, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard,
C. Buton, A. Canto, F. Cellier-Holzem, M. Childress, N. Chotard, Y. Copin, H. K. Fakhouri,
E. Gangler, J. Guy, M. Kerschhaggl, M. Kowalski, J. Nordin, P. Nugent, K. Paech, R. Pain,
E. Pecontal, R. Pereira, S. Perlmutter, D. Rabinowitz, M. Rigault, K. Runge, C. Saunders,
R. Scalzo, G. Smadja, C. Tao, B. A. Weaver, and C. Wu. STANDARDIZING TYPE ia SUPER-
NOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION.
The Astrophysical Journal, 766(2):84, mar 2013.

[4] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[5] Andrew Gordon Wilson and Hannes Nickisch. Kernel interpolation for scalable structured
gaussian processes (kiss-gp). International Conference on Machine Learning (ICML).

[6] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU Acceleration. arXiv e-prints, September
2018.

[7] Daniel Foreman-Mackey, Eric Agol, Sivaram Ambikasaran, and Ruth Angus. Fast and scalable
gaussian process modeling with applications to astronomical time series. The Astronomical
Journal, 154(6):220, nov 2017.

11

	Introduction
	Mathematical Background
	Previous Work
	Structured Kernel Interpolation: KISS-GP
	GPyTorch: Efficient Gaussian Processes

	Data and Model
	Results
	Kernel Learning with Exact Kernel and Exact Solver
	Kernel Learning with Exact Kernel: Linear Conjugate Gradients
	Fixed Noise as a Potential Source of Diverging Gradients
	Extending Exact Solutions Over Large Data
	Runtime Analysis of SKI

	Conclusions

