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Introduction

Gaussian Processes (GPs) have proven to be powerful, flexible, and interpretable 
machine learning models with applications in a broad range of astronomy topics, 
including modelling of how the brightness of stars change over time, exoplanet 
transits, and multi-band supernovae observations. At the core of each of these 
applications is the need to perform parameter inference through the GP model. 
In the language of computer science, this takes the form of hyperparameter 
optimization or kernel learning. In this work we explore efficient methods for 
performing hyperparameter optimization of a GP model over large datasets.

Background
A Gaussian Process is a probabilistic model centered around  the multivariate 
normal distribution who’s covariance matrix is specified with a kernel 
evaluated at the data. This kernel can be thought of as a similarity metric 
between points, with kernels assigning nearby points high similarity scores. 
Hyperparameters in the kernel specify what “nearby” means. The covariance 
matrix K is defined as:

Predictions using a GP require inverting 
this matrix and computing the log-
likelihood requires an inverse and a log-
determinant of this matrix.

Exact GPs on large data are intractable:

Inverses and log-determinants, can be drastically sped up using linear 
conjugate gradients to compute inverses and stochastic trace techniques to 
compute determinants. Use of a preconditioner matrix P speeds up these 
methods. GPyTorch is a python package that uses these methods to speed up 
exact inferences with the preconditioner

Further speed up is obtained through approximations of the kernel. The 
Structure Kernel Interpolation (SKI) method uses inducing points that are 
interpolated from the data and are forced to lie on a grid, giving an 
approximation of the kernel:
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SKI speeds things up:

Evaluating Conjugate Gradient Methods
In astronomy applications, we are interested in hyperparameter optimization, 
and thus need the approximate method to accurately reproduce the loss 
surface of our problem. We explore how the use of conjugate gradient 
methods changes the loss surface. We’ve uncovered that conjugate gradient 
methods are not always great at doing this, as shown below. Below on the left 
is the loss surface plotted in two dimensions at a time when using an exact 
solver with the best fitting parameters overplotted. On the right is the loss 
surface using the same kernel with a solver based on conjugate gradients. 
Many of the points tested did not produce converging gradients!

Scaling to Large Data
These experiments show that SKI and other methods based on conjugate 
gradients may not be suitable for hyperparameter optimization, as arbitrary 
points of the parameter space may have misleading or diverging evaluations 
of the loss function and its gradient. However we can still perform tests to 
see if hyperparameters learned using an exact solver can be transferred to an 
approximate method. Below, we show the deviation of the predictive mean 
on the first 1000 data points of our dataset from the exact GP solver for an 
SKI model trained with increasingly larger sets of the data. Deviation from 
the exact solution remain tolerable over a broad range of data sizes.

Noise May Be The Issue
We attempted to isolate the diverging 
conjugate problem by taking a hint 
from the preconditioner matrix P to 
vary the amount of noise in our model. 
To the left we show plots of the 
predictive mean compared with the 
actual data. To the right we show the 
estimated loss surface using a GP with 
a conjugate gradient solver. Each panel 
shows a different level of noise, at the 
observed noise level (top), five times 
that level (middle), and 20 times that 
level (bottom). Only when we increase 
the noise substantially do we obtain a 
predictive mean and loss surface 
consistent with an exact solve.

Data and Model
Our dataset (right) is a single light curve of the star KIC 1430163, which 
contains 51,505 measurements of the star’s brightness over time. Datasets of 
this size are already intractable for a large number of exact GP solvers. We 
seek to model the variability of this star using a periodic kernel:

Modelling of the star’s rotational period P is the same 
as finding the hyperparameter P of this kernel that 
best fits the data.

We also performed experiments to verify the scaling of SKI methods on large 
data. We find that the runtime for computing the log-likelihood scales above 
linear (bottom right), consistent with the log-linear guarantee for SKI 
computations of the inverse and determinant of K. We find production of 
the posterior fit to the 
training data is more 
consistent with an n2 scaling 
relation (bottom left), which 
is the guarantee for 
conjugate gradient methods.


